线粒体
细胞生物学
衰老
生物
肝细胞
砷
化学
生物化学
体外
有机化学
作者
Qi Wang,Kai Zhu,Aihua Zhang
标识
DOI:10.1016/j.scitotenv.2024.174502
摘要
Arsenic, a widespread environmental poison, can cause significant liver damage upon exposure. Mitochondria are the most sensitive organelles to external factors. Dysfunctional mitochondria play a crucial role in cellular senescence and liver damage. Tunnelling nanotubes (TNTs), membrane structures formed between cells, with fibrous actin (F-actin) serving as the scaffold, facilitate mitochondrial transfer between cells. Notably, TNTs mediate the delivery of healthy mitochondria to damaged cells, thereby mitigating cellular damage. Although limited studies have suggested that F-actin may be modulated by the longevity gene SIRT1, the association between arsenic-induced liver damage and this mechanism remains unexplored. The findings of the current study indicate that arsenic suppresses SIRT1 and F-actin in the rat liver and MIHA cells, impeding the formation of TNTs and mitochondrial transfer between MIHA cells, thereby playing a pivotal role in mitochondrial dysfunction, cellular senescence and liver damage induced by arsenic. Notably, increasing SIRT1 levels effectively mitigated liver mitochondrial dysfunction and cellular senescence triggered by arsenic, highlighting SIRT1's crucial regulatory function. This research provides novel insights into the mechanisms underlying arsenic-induced liver damage, paving the way for the development of targeted preventive and therapeutic drugs to address arsenic-induced liver damage.
科研通智能强力驱动
Strongly Powered by AbleSci AI