亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement

脉搏波分析 计算机科学 血压 脉冲波 脉搏(音乐) 人工智能 医学 脉冲波速 电信 内科学 探测器 抖动
作者
Yuhui Cen,Jingchun Luo,Hongbo Wang,Li Chen,Xing Zhu,Shijie Guo,Jingjing Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5829-5841
标识
DOI:10.1109/jbhi.2024.3423461
摘要

Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
balko完成签到,获得积分10
36秒前
NS完成签到,获得积分10
47秒前
努力努力再努力完成签到,获得积分10
58秒前
1分钟前
zqq完成签到,获得积分0
1分钟前
科研通AI5应助自由青采纳,获得10
1分钟前
小透明发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助rare采纳,获得10
1分钟前
自由青发布了新的文献求助10
1分钟前
1分钟前
1分钟前
rare发布了新的文献求助10
1分钟前
科研通AI5应助rare采纳,获得10
1分钟前
1分钟前
13656479046发布了新的文献求助10
2分钟前
coderchen01完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
qqq完成签到,获得积分10
2分钟前
coderchen01发布了新的文献求助10
2分钟前
豌豆完成签到 ,获得积分10
2分钟前
善学以致用应助欣喜翠丝采纳,获得10
3分钟前
wykion完成签到,获得积分0
3分钟前
13656479046完成签到,获得积分10
3分钟前
Guo完成签到 ,获得积分10
4分钟前
orixero应助jagger采纳,获得10
4分钟前
4分钟前
rare发布了新的文献求助10
4分钟前
4分钟前
4分钟前
caca完成签到,获得积分0
4分钟前
1111发布了新的文献求助10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792466
求助须知:如何正确求助?哪些是违规求助? 3336710
关于积分的说明 10281927
捐赠科研通 3053448
什么是DOI,文献DOI怎么找? 1675647
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468