An advanced learning approach for detecting sarcasm in social media posts: Theory and solutions

讽刺 社会化媒体 心理学 社会心理学 社会学 人工智能 计算机科学 认识论 讽刺 语言学 万维网 哲学
作者
Pradeep Kumar Roy
出处
期刊:Social Science Quarterly [Wiley]
被引量:3
标识
DOI:10.1111/ssqu.13442
摘要

Abstract Objective Users of social media platforms such as Facebook, Instagram, and Twitter can view and share their daily life events through text, photographs, or videos. These platforms receive many sarcastic posts daily because there were fewer limits on what could be posted. The presence of multiple languages and media types in a single post makes it harder to identify sarcastic messages on the current platform than on posts written solely in English. Methods This study provides both the theory and solutions about sarcastic post detection on social platforms. Hindi–English code‐mixed data were used to train and test the automated models for sarcasm detection. The models in this study were constructed using traditional machine learning, deep neural networks, LSTM (long short‐term memory), CNN (convolutional neural network), and the combinations of BERT (Bidirectional Encoder Representations from Transformers) with LSTM. Results The experimental results confirm that in the Hindi–English code‐mixed data set, the CNN, LSTM, and BERT‐LSTM ensemble perform best for sarcasm detection. The proposed model achieved an accuracy of 96.29 percent and outperformed by 2.29 percent compared to the existing models. Conclusion The performance of the proposed system strengthens the code‐mixed sarcastic post detection on social platforms. The model will help filter not only English but also Hindi‐English code‐mixed sarcastic posts on social platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助葛儿采纳,获得10
1秒前
huangqi完成签到,获得积分20
1秒前
2秒前
4秒前
彬略略完成签到,获得积分20
6秒前
7秒前
7秒前
赘婿应助zxx5313491采纳,获得10
8秒前
Mathilda发布了新的文献求助10
9秒前
yyw完成签到 ,获得积分10
10秒前
科研通AI5应助策略采纳,获得10
10秒前
嚯嚯嚯嚯完成签到 ,获得积分10
10秒前
11秒前
Lucas应助安谢采纳,获得10
11秒前
11秒前
kiltorh发布了新的文献求助10
12秒前
12秒前
任斯发布了新的文献求助10
13秒前
13秒前
搜集达人应助可乐采纳,获得10
14秒前
zj发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
张钟硕发布了新的文献求助10
16秒前
16秒前
LYN-66发布了新的文献求助10
16秒前
daisy完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
同瑶发布了新的文献求助10
20秒前
朝菌发布了新的文献求助10
21秒前
852应助研友_O8We7n采纳,获得10
21秒前
充电宝应助Mathilda采纳,获得10
22秒前
23秒前
daisy发布了新的文献求助10
23秒前
策略发布了新的文献求助10
25秒前
zxx5313491完成签到,获得积分10
25秒前
25秒前
汉堡包应助color采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247483
求助须知:如何正确求助?哪些是违规求助? 3780532
关于积分的说明 11869680
捐赠科研通 3433803
什么是DOI,文献DOI怎么找? 1884639
邀请新用户注册赠送积分活动 936234
科研通“疑难数据库(出版商)”最低求助积分说明 842130