Nanometer-Mesa Inverted-Pyramid Photonic Crystals for Thin Silicon Solar Cells

材料科学 光电子学 薄脆饼 光电流 硅光子学 光伏 吸收(声学) 等离子太阳电池 光学 混合硅激光器 晶体硅 单晶硅 光伏系统 物理 生态学 复合材料 生物
作者
Sara M. Almenabawy,Yibo Zhang,Andrew G. Flood,Rajiv Prinja,Nazir P. Kherani
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (11): 13808-13816 被引量:9
标识
DOI:10.1021/acsaem.2c02437
摘要

The usage of ultrathin flexible silicon foil can further extend the functionality of silicon and emerging silicon-based tandem solar cells particularly in building and vehicle-integrated photovoltaics where high-efficiency, lightweight, and flexible solar panels are highly desired. However, silicon's relatively weak optical absorption coefficient especially in the near infrared (NIR) region limits its optoelectronic applications with a reduced wafer thickness. Herein, we seek to overcome this limitation by exploring the wave interference phenomenon for effective absorption of NIR light in ultrathin silicon. Particularly, inverted pyramid photonic crystals (PhCs) with nano–micrometer-scale feature sizes are carved directly on silicon. Detailed experimental and theoretical studies are presented by systematically examining the optical properties of PhC-integrated thin silicon substrates (down to a 10 μm thickness). The corresponding maximum photocurrent density for a thin absorber is projected and compared with that predicted by Lambertian's limit. In contrast to traditionally configured microscale inverse pyramids, we show that a small mesa width is critical to achieving high optical performance for a wave-interference-based absorption enhancement. Mesa widths as small as 35 nm are realized over a large wafer-scale fabrication using facile techniques. The optical performance of 10 μm silicon indicates that an ideal photocurrent density approaching 40 mA/cm2 is feasible. This study indicates that photonic crystals provide strong wave interference in ultrathin silicon, and in particular, we observe high optical absorption even after removing more than 90% of the silicon from conventional "thick" Si wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿尼发布了新的文献求助10
2秒前
wickedzz完成签到,获得积分10
4秒前
sillyforce完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
秋山伊夫完成签到,获得积分10
10秒前
11秒前
11秒前
shenna发布了新的文献求助10
15秒前
perfect完成签到 ,获得积分10
16秒前
自信筮发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
26秒前
天天快乐应助害怕的鹏飞采纳,获得10
27秒前
欢呼白晴完成签到 ,获得积分10
28秒前
Ava应助daihq3采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
shiqiang mu应助科研通管家采纳,获得10
30秒前
科奇应助科研通管家采纳,获得10
30秒前
pcr163应助科研通管家采纳,获得30
30秒前
打打应助科研通管家采纳,获得10
30秒前
昏睡的蟠桃应助科研通管家采纳,获得100
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得30
31秒前
彭于彦祖应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
希望天下0贩的0应助GGBoy采纳,获得10
33秒前
37秒前
38秒前
学疯完成签到,获得积分10
38秒前
李健的小迷弟应助0℃采纳,获得10
39秒前
39秒前
高灵雨完成签到,获得积分10
41秒前
41秒前
勤恳如凡发布了新的文献求助10
42秒前
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864393
求助须知:如何正确求助?哪些是违规求助? 3406788
关于积分的说明 10651271
捐赠科研通 3130707
什么是DOI,文献DOI怎么找? 1726548
邀请新用户注册赠送积分活动 831812
科研通“疑难数据库(出版商)”最低求助积分说明 780020