Multitask Deep Learning for Automated Detection of Endoleak at Digital Subtraction Angiography during Endovascular Aneurysm Repair

医学 数字减影血管造影 放射科 腹主动脉瘤 腔内修复术 卷积神经网络 深度学习 人工智能 动脉瘤 血管造影 计算机科学
作者
Stefan P.M. Smorenburg,Arjan W.J. Hoksbergen,Kak Khee Yeung,Jelmer M. Wolterink
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240392
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a novel multitask deep learning framework for automated detection and localization of endoleaks at aortic digital subtraction angiography (DSA) performed during real-world endovascular aneurysm repair (EVAR) procedures for abdominal aortic aneurysm. Materials and Methods This retrospective study analyzed intraoperative aortic DSA images from EVAR patients (January 2017-December 2021). An expert panel assessed each sequence for endoleaks. Each sequence was processed into three input channels: peak density (PD), time to peak (TTP), and area under the time-density curve (AUC-TD), generating three 2D perfusion maps per patient. These maps served as input into a convolutional neural network (CNN) for binary detection (classification) and localization (regression) of endoleaks through multitask learning. Fivefold cross-validation was performed, with patients split 80:20 into training/testing for each fold. Performance metrics included AUC, F1 score, precision, recall and were compared with human experts. Results The study included 220 patients (181 male; median age, 74 years; IQR, 68–79 years). Endoleaks were visible in 111 out of 220 (50.5%) patients. The model identified and localized endoleaks with an AUC of 0.85 (SD 0.0031), F1 score of 0.78 (SD 0.21), 95% precision, and 73% recall. Compared with the procedural team (94% precision, 63% recall), it had higher values in both metrics, with an F1-score within the human observer range (0.75–0.85). Balancing regression and classification by multitask learning delivered optimal results. The interobserver agreement among human experts was moderate (Fleiss’ Kappa = 0.404). Conclusion A novel, fully automated deep learning method accurately detected and localized endoleaks on DSA imaging from EVAR procedures. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动城完成签到,获得积分10
1秒前
fs9完成签到,获得积分10
1秒前
1秒前
皮皮虾完成签到,获得积分10
1秒前
虚幻不弱发布了新的文献求助10
2秒前
2秒前
3秒前
自由大叔完成签到,获得积分10
3秒前
Qiuyan1111完成签到,获得积分10
3秒前
Hello应助刘星采纳,获得10
3秒前
可爱的函函应助super采纳,获得10
3秒前
大个应助落后乐荷采纳,获得10
4秒前
Aicy1111111完成签到,获得积分10
5秒前
3333发布了新的文献求助10
5秒前
Ava应助斑比采纳,获得10
6秒前
汉堡包应助淡定的数据线采纳,获得10
6秒前
大海完成签到,获得积分10
6秒前
6秒前
Orange应助scc采纳,获得10
6秒前
翟煜发布了新的文献求助10
7秒前
英俊的铭应助yunfeiyang采纳,获得50
7秒前
cc发布了新的文献求助10
8秒前
8秒前
青水完成签到 ,获得积分10
9秒前
聪明的天亦完成签到,获得积分10
10秒前
风清扬发布了新的文献求助10
10秒前
10秒前
鸣笛应助阿瓦隆的蓝胖子采纳,获得30
10秒前
削皮柚子完成签到 ,获得积分10
10秒前
11秒前
打打应助黎li采纳,获得10
11秒前
Airy完成签到,获得积分10
12秒前
NexusExplorer应助寒冷无色采纳,获得30
13秒前
13秒前
gfhdf完成签到,获得积分10
14秒前
15秒前
15秒前
Linsey发布了新的文献求助10
15秒前
15秒前
鸣笛应助白雪1996采纳,获得50
16秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915347
求助须知:如何正确求助?哪些是违规求助? 3460817
关于积分的说明 10913379
捐赠科研通 3187697
什么是DOI,文献DOI怎么找? 1762048
邀请新用户注册赠送积分活动 852452
科研通“疑难数据库(出版商)”最低求助积分说明 793394