Multitask Deep Learning for Automated Detection of Endoleak at Digital Subtraction Angiography during Endovascular Aneurysm Repair

医学 数字减影血管造影 放射科 腹主动脉瘤 腔内修复术 卷积神经网络 深度学习 人工智能 动脉瘤 血管造影 计算机科学
作者
Stefan P.M. Smorenburg,Arjan W.J. Hoksbergen,Kak Khee Yeung,Jelmer M. Wolterink
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240392
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a novel multitask deep learning framework for automated detection and localization of endoleaks at aortic digital subtraction angiography (DSA) performed during real-world endovascular aneurysm repair (EVAR) procedures for abdominal aortic aneurysm. Materials and Methods This retrospective study analyzed intraoperative aortic DSA images from EVAR patients (January 2017-December 2021). An expert panel assessed each sequence for endoleaks. Each sequence was processed into three input channels: peak density (PD), time to peak (TTP), and area under the time-density curve (AUC-TD), generating three 2D perfusion maps per patient. These maps served as input into a convolutional neural network (CNN) for binary detection (classification) and localization (regression) of endoleaks through multitask learning. Fivefold cross-validation was performed, with patients split 80:20 into training/testing for each fold. Performance metrics included AUC, F1 score, precision, recall and were compared with human experts. Results The study included 220 patients (181 male; median age, 74 years; IQR, 68–79 years). Endoleaks were visible in 111 out of 220 (50.5%) patients. The model identified and localized endoleaks with an AUC of 0.85 (SD 0.0031), F1 score of 0.78 (SD 0.21), 95% precision, and 73% recall. Compared with the procedural team (94% precision, 63% recall), it had higher values in both metrics, with an F1-score within the human observer range (0.75–0.85). Balancing regression and classification by multitask learning delivered optimal results. The interobserver agreement among human experts was moderate (Fleiss’ Kappa = 0.404). Conclusion A novel, fully automated deep learning method accurately detected and localized endoleaks on DSA imaging from EVAR procedures. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zzz236发布了新的文献求助10
刚刚
弹簧豆完成签到,获得积分10
刚刚
落落完成签到 ,获得积分20
1秒前
AAA完成签到,获得积分10
1秒前
huohuo143发布了新的文献求助10
1秒前
1秒前
费老三发布了新的文献求助30
1秒前
谖草发布了新的文献求助10
1秒前
yuM发布了新的文献求助10
1秒前
1秒前
liyuxuan发布了新的文献求助10
1秒前
1秒前
Hannya发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
呼噜噜发布了新的文献求助10
2秒前
kongmou完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
小小美少女完成签到 ,获得积分10
4秒前
七安发布了新的文献求助10
4秒前
Doki发布了新的文献求助10
5秒前
所所应助李子采纳,获得10
5秒前
ljj关闭了ljj文献求助
5秒前
5秒前
6秒前
promise发布了新的文献求助10
6秒前
6秒前
哥叔华发布了新的文献求助10
7秒前
阿琛发布了新的文献求助10
7秒前
女爰舍予发布了新的文献求助10
7秒前
lixiang发布了新的文献求助10
8秒前
yu发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454