已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reaction Exploration Reveals Strong Kinetic Filtering in Li-Ion Battery Electrolyte Degradation

降级(电信) 电解质 动能 离子 电池(电) 材料科学 化学 化学工程 计算机科学 热力学 物理 物理化学 工程类 电极 有机化学 电信 经典力学 功率(物理)
作者
Hsuan‐Hao Hsu,Tianfan Jin,Brett M. Savoie
标识
DOI:10.26434/chemrxiv-2025-xmhjg
摘要

A solid electrolyte interphase (SEI) forms spontaneously during the first few recharging cycles of a lithium-ion battery (LIB) due to electrolyte degradation at the electrodes. The properties of the SEI critically affect the lifespan and stability of LIBs, but the degradation reactions governing SEI formation are challenging to resolve and broadly applicable computational methods for prediction remain limited. In this study, we demonstrate that automated reaction exploration methods can predict major degradation products of common electrolytes without relying on experimental data, revealing unexpected kinetic filtering effects that strongly constrain the observable degradation chemistry of SEI formation. The degradation chemistry of a traditional LIB electrolyte, consisting of ethylene carbonate (EC) and lithium hexafluorophosphate (LiPF6), is analyzed out to a depth of five reactions as a benchmark. Despite the multitude of theoretically possible reaction pathways, our computational chemical reaction network (CRN) reveals strong kinetic selectivity toward lithium ethylene monocarbonate (LEMC) and lithium ethylene dicarbonate (LEDC), including several previously unreported routes to these key SEI organic species. The resulting network provides a unified explanation for how reaction barriers and kinetics drive the competing formation of LEMC and LEDC, and clarifies the influence of moisture on SEI aging. Generated entirely on the basis of computational transition state searches, this comprehensive CRN demonstrates the potential of reaction exploration methods to uncover mechanistic insights governed by kinetic filtering and enable rational electrolyte design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和平鸽完成签到,获得积分10
1秒前
1秒前
3秒前
ITACHI发布了新的文献求助10
5秒前
7秒前
7秒前
科研通AI6应助伶俐惜萱采纳,获得10
9秒前
小珂完成签到,获得积分10
10秒前
11秒前
by发布了新的文献求助10
12秒前
qu完成签到 ,获得积分10
13秒前
13秒前
张志超发布了新的文献求助10
15秒前
霸气灵松完成签到 ,获得积分10
16秒前
ITACHI完成签到,获得积分10
17秒前
叶95发布了新的文献求助10
17秒前
爱笑的毛衣完成签到,获得积分10
17秒前
18秒前
不安青牛应助闪闪的熠彤采纳,获得20
21秒前
24秒前
和平鸽发布了新的文献求助10
24秒前
27秒前
忧虑的安青完成签到,获得积分10
29秒前
29秒前
32秒前
研友_LX7Qg8完成签到 ,获得积分10
33秒前
小透明发布了新的文献求助10
33秒前
王先进发布了新的文献求助10
34秒前
beforethedawn完成签到,获得积分10
34秒前
35秒前
开心小兔子完成签到 ,获得积分10
36秒前
37秒前
上官若男应助研友_LX7Qg8采纳,获得20
40秒前
虚幻白桃完成签到,获得积分10
41秒前
叶95完成签到,获得积分10
46秒前
47秒前
王先进完成签到,获得积分10
47秒前
SciGPT应助淡定的数据线采纳,获得10
48秒前
bkagyin应助ouo采纳,获得10
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270