Comparative study of reinforcement learning and reduced-order model-based control for mitigating vortex-induced vibration

物理 涡流 振动 强化学习 订单(交换) 涡激振动 钢筋 机械 人工智能 声学 结构工程 财务 计算机科学 工程类 经济
作者
Yujia Zhao,Haokui Jiang,Jichao Li,Shunxiang Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (4)
标识
DOI:10.1063/5.0266100
摘要

Various active flow control (AFC) algorithms have been developed for vortex-induced vibration (VIV) suppression, but comparative studies on different control strategies remain limited. This study compares reinforcement learning (RL)-based and reduced-order model (ROM)-based closed-loop control algorithms for mitigating VIV. A transversely oscillating cylinder confined between two walls is employed to assess both control strategies, with AFC achieved through the blowing and suction of two synthetic jets mounted on the cylinder. We first introduce and validate the two control frameworks, demonstrating their effectiveness in suppressing VIV at a Reynolds number of 100. Next, dynamic mode decomposition is applied to extract eigenvalues and energy distributions of flow modes during suppression to analyze the differences between the two control strategies. Our results show that the RL-based strategy reduces VIV amplitude to less than 10% of its initial value within 5–6 oscillation periods, whereas the ROM-based strategy requires about 14 periods. Most modal energy concentrates in the first few modes, indicating that these modes primarily govern the flow field characteristics during control for both methods. We find that the RL-based strategy exhibits larger decay rates in the dominant modes, which corresponds to the faster decrease in VIV amplitude in the early control stage. However, the RL-based strategy exhibits low-energy modes with growth rates nearing or exceeding zero, whereas the ROM-based strategy ensures all modal growth rates remain negative. This results in better control performance for the ROM-based strategy during the later stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助侯mm采纳,获得10
1秒前
AHa关闭了AHa文献求助
2秒前
2秒前
2秒前
酷波er应助LX采纳,获得10
3秒前
爱吃的肥虾完成签到,获得积分10
4秒前
5秒前
5秒前
神冰小酱完成签到,获得积分10
5秒前
孙玮完成签到,获得积分10
6秒前
肸肸应助Feng采纳,获得20
6秒前
wonhui完成签到,获得积分20
7秒前
7秒前
江舟添盛望完成签到 ,获得积分10
8秒前
LTT发布了新的文献求助10
9秒前
9秒前
9秒前
归尘发布了新的文献求助30
10秒前
Junehe发布了新的文献求助10
10秒前
xiuxiu_27完成签到 ,获得积分10
10秒前
小蘑菇应助peiling采纳,获得10
11秒前
11秒前
烟花应助zzx采纳,获得10
12秒前
JamesPei应助精明的忆灵采纳,获得10
12秒前
xuhenian关注了科研通微信公众号
13秒前
WILD完成签到 ,获得积分10
13秒前
14秒前
牛乐乐完成签到,获得积分10
14秒前
bao发布了新的文献求助10
16秒前
爱学习的小杨完成签到,获得积分10
17秒前
18秒前
18秒前
包远锋完成签到,获得积分10
19秒前
peiling完成签到,获得积分10
19秒前
CipherSage应助Pan采纳,获得10
20秒前
Jasper应助安在哉采纳,获得10
22秒前
orange3711发布了新的文献求助10
22秒前
zzx发布了新的文献求助10
24秒前
寻舟者完成签到,获得积分10
24秒前
悦耳静枫完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932162
求助须知:如何正确求助?哪些是违规求助? 3477130
关于积分的说明 10995684
捐赠科研通 3207374
什么是DOI,文献DOI怎么找? 1772456
邀请新用户注册赠送积分活动 859719
科研通“疑难数据库(出版商)”最低求助积分说明 797246