法拉第效率
电解质
欠电位沉积
成核
阳极
锂(药物)
双金属片
材料科学
金属
沉积(地质)
无机化学
钾
化学
电化学
物理化学
电极
冶金
医学
循环伏安法
古生物学
沉积物
有机化学
生物
内分泌学
作者
Kassie Nigus Shitaw,Hailemariam Kassa Bezabh,Yosef Nikodimos,Misganaw Adigo Weret,Teshager Mekonnen Tekaligne,Semaw Kebede Merso,Bereket Woldegbreal Taklu,Shi‐Kai Jiang,Chunying Li,Hsin‐Yueh Liu,She‐Huang Wu,Wei‐Nien Su,Bing‐Joe Hwang
标识
DOI:10.1002/smtd.202500207
摘要
Abstract Defects in deposited lithium (Li) severely cause dendrite growth and promote reactions between Li and electrolytes, resulting in active Li loss in anode‐free Li metal batteries (AFLMBs). Herein, potassium underpotential deposition (K‐UPD) is systematically established to heal defective Li and create a K‐Cu bimetallic interface, facilitating uniform bulk Li deposition. The K‐UPD at a potential of ≈1.0 V, higher than the equilibrium potentials of bulk K⁺ (0.1 V) and Li⁺ (0.0 V), significantly lowers the nucleation barrier and mitigates Li dendrite growth due to the better lithiophilicity of K metal compared to Cu. Meanwhile, the higher surface mobility of K atoms than Li atoms enables K metal to heal defects and prevent reactions between Li and electrolytes. The lower adsorption energy (ΔE) of the K atoms (−1.56 eV) than that of Li atoms (0.032 eV) indicates favorable adsorption of the K atom, as confirmed by DFT calculations. As a result, Cu||Li cell containing 1.3 M LiFSI+0.2 M KFSI bimetallic electrolyte reaches >1600 h, while Cu||NMC532 full‐cell achieves a higher average Coulombic efficiency (avg. CE) of 99.6% than the cell with 1.5 M LiFSI electrolyte (≈98.2%) after the 100 th cycle. This work offers insights into the K‐UPD mechanism for enhancing interface stability and healing defects in deposited Li.
科研通智能强力驱动
Strongly Powered by AbleSci AI