Design of Multi-Cancer VOCs Profiling Platform via a Deep Learning-Assisted Sensing Library Screening Strategy

化学 仿形(计算机编程) 环境化学 纳米技术 计算机科学 材料科学 操作系统
作者
Xu Gao,Shuoyang Ma,Weiwei Ni,Yongbin Kuang,Yang Yu,Lingjia Zhou,Yongping Li,Chao Guo,Chao Xu,Linxian Li,Hui Huang,Jinsong Han
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06468
摘要

The efficiency of sensor arrays in parallel discrimination of multianalytes is fundamentally influenced by the quantity and performance of the sensor elements. The advent of combinational design has notably accelerated the generation of chemical libraries, offering numerous candidates for the development of robust sensor arrays. However, screening elements with superior cross-responsiveness remains challenging, impeding the development of high-performance sensor arrays. Herein, we propose a new deep learning-assisted, two-step screening strategy to identify the optimal combination of minimal sensor elements, using a designed volatile organic compounds (VOCs)-targeted sensor library. 400 sensing elements constructed by pairing 20 ionizable cationic elements and 20 anionic dyes in the sensor library were employed for various VOCs, generating plentiful color variation data. By employing a feedforward neural network─random forest-recursive feature elimination (FRR) algorithm, sensing elements were effectively screened, resulting in the rapidly producing 8-element and 10-element arrays for two VOC models, both achieving 100% discrimination accuracy. Furthermore, a smartphone-based point-of-care testing (POCT) platform achieved cancer discrimination in a simulated cancer VOC model, using image-based deep learning, demonstrating the rationality and practicality of deep learning in the assembly of sensor elements for parallel sensing platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
4秒前
5秒前
5秒前
Cheetahhh完成签到,获得积分10
6秒前
wankai发布了新的文献求助10
8秒前
8秒前
mmyhn应助科研通管家采纳,获得20
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助orange9采纳,获得10
11秒前
jianglili应助轻松笙采纳,获得10
12秒前
13秒前
16秒前
徐什么宝完成签到,获得积分10
17秒前
18秒前
18秒前
余味应助Kun采纳,获得10
19秒前
NexusExplorer应助vvv采纳,获得10
21秒前
落日晚归舟完成签到,获得积分10
21秒前
orange9发布了新的文献求助10
23秒前
小曲发布了新的文献求助10
23秒前
24秒前
活力的泥猴桃完成签到 ,获得积分10
24秒前
25秒前
华仔应助llllllb采纳,获得10
26秒前
29秒前
30秒前
31秒前
31秒前
学术蛔虫完成签到 ,获得积分10
33秒前
34秒前
卫卫完成签到 ,获得积分10
35秒前
李健应助执着的岂愈采纳,获得30
36秒前
37秒前
38秒前
啦啦啦完成签到,获得积分10
39秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779792
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222123
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549