Comparison between logistic regression and machine learning algorithms on prediction of noise-induced hearing loss and investigation of SNP loci

逻辑回归 噪音(视频) 计算机科学 SNP公司 回归 听力损失 人工智能 机器学习 语音识别 模式识别(心理学) 听力学 统计 生物 医学 数学 单核苷酸多态性 遗传学 基因型 图像(数学) 基因
作者
Jie Lü,Xiqun Lu,Yixiao Wang,Hengdong Zhang,Lei Han,Baoli Zhu,Boshen Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-00050-1
摘要

To compare the comprehensive performance of conventional logistic regression (LR) and seven machine learning (ML) algorithms in Noise-Induced Hearing Loss (NIHL) prediction, and to investigate the single nucleotide polymorphism (SNP) loci significantly associated with the occurrence and progression of NIHL. A total of 1,338 noise-exposed workers from 52 enterprises in Jiangsu Province were included in this study. 88 SNP loci involving multiple genes related to noise exposure and hearing loss were detected. LR and multiple ML algorithms were employed to establish the NIHL prediction model with accuracy, recall, precision, F-score, R2 and AUC as performance indicators. Compared to conventional LR, the evaluated ML models Generalized Regression Neural Network (GRNN), Probabilistic Neural Network (PNN), Genetic Algorithm-Random Forests (GA-RF) demonstrate superior performance and were considered to be the optimal models for processing large-scale SNP loci dataset. The SNP loci screened by these models are pivotal in the process of NIHL prediction, which further improves the prediction accuracy of the model. These findings open new possibilities for accurate prediction of NIHL based on SNP locus screening in the future, and provide a more scientific basis for decision-making in occupational health management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
solitude完成签到,获得积分10
2秒前
5秒前
扒开皮皮发布了新的文献求助10
6秒前
8秒前
江南最长情完成签到,获得积分20
9秒前
10秒前
十一发布了新的文献求助10
10秒前
十三完成签到,获得积分10
12秒前
wr发布了新的文献求助10
13秒前
明理问柳完成签到,获得积分10
14秒前
chiyu发布了新的文献求助10
14秒前
111完成签到,获得积分10
15秒前
豪的花花完成签到,获得积分10
16秒前
16秒前
豆豆哥完成签到 ,获得积分10
17秒前
17秒前
善始善终完成签到,获得积分10
19秒前
曾子曰完成签到,获得积分10
19秒前
steve完成签到,获得积分0
19秒前
李爱国应助sugkook采纳,获得10
19秒前
reece完成签到 ,获得积分10
20秒前
chiyu完成签到,获得积分10
21秒前
gyhmm发布了新的文献求助10
21秒前
23秒前
23秒前
田様应助乐观的天问采纳,获得10
24秒前
车秋寒完成签到,获得积分10
26秒前
邱继双完成签到,获得积分10
26秒前
26秒前
MingJia发布了新的文献求助10
28秒前
今后应助paul采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
31秒前
打打应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
庸尘完成签到,获得积分10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
Billy应助科研通管家采纳,获得30
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834960
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498597
捐赠科研通 3096925
什么是DOI,文献DOI怎么找? 1705320
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772110