A Self‐Oxidizing o‐Dihydroxybenzene‐Based Covalent Organic Framework Hydrogel with Broad‐Spectrum Antibacterial Properties for Promoting Diabetic Wound Healing

氧化剂 材料科学 自愈 广谱 共价键 抗菌活性 伤口愈合 纳米技术 组合化学 有机化学 医学 细菌 外科 化学 病理 生物 替代医学 遗传学
作者
Yuandi Xue,Xian Chen,Fan Wu,Canrong Chen,Na Lin,Shaofeng Dong,Ying Sun,Zian Lin
出处
期刊:Advanced Functional Materials [Wiley]
被引量:2
标识
DOI:10.1002/adfm.202505669
摘要

Abstract Given the inherent limitations of current nano‐based antimicrobial materials, including their restricted broad‐spectrum efficacy and challenges in practical application, it is essential to develop an innovative therapeutic platform that effectively alleviates these shortcomings. Herein, inspired by the cryptic antimicrobial properties of natural marine mussels, an o ‐dihydroxybenzene‐based covalent organic framework (TAPT‐2,3DHA‐COF) is successfully synthesized, which exhibits potent broad‐spectrum antibacterial activity through the auto‐oxidative release of antibacterial agents. At the minimum inhibitory concentrations (MICs), potent antibacterial effects (> 90% inhibition) are observed against six common and even resistant bacterial strains, including Staphylococcus aureus (1024 µg mL −1 ), Escherichia coli (512 µg mL −1 ), Pseudomonas aeruginosa (256 µg mL −1 ), methicillin‐resistant Staphylococcus aureus (MRSA; 1024 µg mL −1 ), etc. Encouraged by the aforementioned excellent performance, a hybrid acrylamide hydrogel covalent organic framework (Gel@COF) is constructed, which combines the advantages of both components, including robust antibacterial activity, mechanical stability, and biocompatibility. Notably, the potent healing‐promoting capability of Gel@COF is demonstrated in diabetic mice models with MRSA‐infected wounds, achieving an impressive wound healing rate of 99.62%. This work not only broadens the application of COFs in the field of antimicrobials but also provides a new strategy for developing advanced anti‐infective materials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
北侨发布了新的文献求助10
1秒前
2秒前
5秒前
开心清炎完成签到 ,获得积分10
6秒前
北侨完成签到,获得积分10
7秒前
jias发布了新的文献求助10
7秒前
李健的小迷弟应助Choyy采纳,获得10
8秒前
8秒前
8秒前
清脆平露完成签到,获得积分10
10秒前
Annn发布了新的文献求助10
11秒前
11秒前
华仔应助about0731采纳,获得10
12秒前
芝士完成签到 ,获得积分10
13秒前
13秒前
14秒前
蔚蓝完成签到,获得积分10
14秒前
北冥有鱼发布了新的文献求助10
14秒前
17秒前
dj发布了新的文献求助10
19秒前
jias发布了新的文献求助10
19秒前
如常完成签到,获得积分10
20秒前
20秒前
21秒前
bkagyin应助xxx采纳,获得10
23秒前
23秒前
25秒前
25秒前
25秒前
axin完成签到,获得积分10
26秒前
落崖惊风应助dj采纳,获得10
28秒前
about0731发布了新的文献求助10
28秒前
迷路的二狗完成签到,获得积分20
28秒前
29秒前
30秒前
orixero应助千万雷同采纳,获得10
30秒前
巨星不吃辣完成签到,获得积分10
32秒前
jias发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160