索波列夫空间
磁流体力学
数学
库埃特流
流量(数学)
空格(标点符号)
理论(学习稳定性)
数学分析
贝索夫空间
几何学
物理
插值空间
磁场
功能分析
基因
机器学习
量子力学
生物化学
哲学
化学
语言学
计算机科学
作者
Jiakun Jin,Xiaoxia Ren,Dongyi Wei
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2025-04-17
卷期号:38 (5): 055009-055009
被引量:1
标识
DOI:10.1088/1361-6544/adcb81
摘要
Abstract In this paper, we investigate the stability of the 2D Couette flow ( y , 0 ) T under the influence of a uniform magnetic field ( β , 0 ) T . Our focus is on the magnetohydrodynamic (MHD) equations on T × R , characterized by distinct viscosity coefficient ν and magnetic diffusion coefficient µ . We derive space-time estimates for the linearized equations for all β > 0, which capture the enhanced dissipation and inviscid damping effects. As an application, we establish nonlinear stability for perturbations of size c min { ν , μ } 1 2 in a succinct manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI