Development of a deep learning radiomics model combining lumbar CT, multi-sequence MRI, and clinical data to predict high-risk cage subsidence after lumbar fusion: a retrospective multicenter study

腰椎 医学 序列(生物学) 脊柱融合术 回顾性队列研究 融合 多中心研究 放射科 外科 语言学 哲学 遗传学 生物 随机对照试验
作者
Congying Zou,Ruiyuan Chen,Biao Wang,Fei Qi,Hongxing Song,Lei Zang
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12938-025-01355-y
摘要

To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion. This study analyzed preoperative CT and MRI data from 305 patients undergoing lumbar fusion surgery from three centers. Using a deep learning model based on 3D vision transformations, the data were divided the dataset into training (n = 214), validation (n = 61), and test (n = 30) groups. Feature selection was performed using LASSO regression, followed by the development of a logistic regression model. The predictive ability of the model was assessed using various machine learning algorithms, and a combined clinical model was also established. Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, and 1 clinical feature were selected. The combined model demonstrated strong predictive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 for the training, validation, and test groups, respectively. Notably, our model outperformed predictions made by two experienced surgeons. This study developed a robust predictive model that integrates clinical features and imaging data to identify high-risk patients for CS following lumbar fusion. This model has the potential to improve clinical decision-making and reduce the need for revision surgeries, easing the burden on healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cx330完成签到,获得积分10
2秒前
郮东完成签到 ,获得积分10
9秒前
感性的芹菜完成签到,获得积分10
9秒前
17秒前
zoe完成签到 ,获得积分10
18秒前
18秒前
包容爆米花完成签到,获得积分10
21秒前
手握10篇sci完成签到,获得积分20
26秒前
31秒前
31秒前
杰青发布了新的文献求助10
35秒前
葵景完成签到,获得积分10
35秒前
三水发布了新的文献求助10
39秒前
Aurelia完成签到 ,获得积分10
39秒前
39秒前
39秒前
SciGPT应助千秋入画采纳,获得10
41秒前
103921wjk发布了新的文献求助10
42秒前
43秒前
个性涵菡完成签到 ,获得积分10
44秒前
45秒前
聪明胡图图完成签到,获得积分10
46秒前
47秒前
依米若米完成签到,获得积分10
49秒前
yuaner发布了新的文献求助10
50秒前
千秋入画发布了新的文献求助10
53秒前
54秒前
科研通AI2S应助娇气的亦云采纳,获得10
54秒前
斯文败类应助科研通管家采纳,获得10
59秒前
打打应助科研通管家采纳,获得10
59秒前
慕青应助科研通管家采纳,获得10
59秒前
充电宝应助科研通管家采纳,获得10
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
汉堡包应助科研通管家采纳,获得10
59秒前
李健应助科研通管家采纳,获得10
59秒前
59秒前
DaLu发布了新的文献求助10
1分钟前
1分钟前
zjw关闭了zjw文献求助
1分钟前
xzy998应助董科研严采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649