溅射
材料科学
氮化物
钛
氮化钛
电子
光电子学
冶金
薄膜
纳米技术
物理
核物理学
图层(电子)
出处
期刊:Inorganics (Basel)
[Multidisciplinary Digital Publishing Institute]
日期:2025-06-16
卷期号:13 (6): 201-201
标识
DOI:10.3390/inorganics13060201
摘要
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the magnetron sputtering parameters. The microscopic analyses show that the film thicknesses ranged from about 355 to 459 nm. Moreover, with the process parameters used in this work, TiN nanostructures are formed more easily when the nitrogen flow rate is ≤5 sccm, and compact TiN films are formed more easily when the nitrogen flow rate is ≥10 sccm. Elemental analyses showed that the N:Ti atomic ratios of the TiN films ranged from about 0.587 to 1.40. The results of surface analysis showed the presence of a certain amount of oxygen on the surface of the TiN film, indicating that the surface TiN may exist in the form of TiN:O. The electrical resistance test showed that the resistivity of the TiN coating ranges from 1.59 × 10−4 to 1.83 × 10−1 Ω·m. And the closer the N:Ti atomic ratio is to one, the lower the TiN film resistivity is. The electron emission coefficient (EEC) results show that among the film samples from #3 to #10, sample #8 has the lowest EEC, with a peak EEC of only 1.61. By comparing the resistivity and EEC data, a novel phenomenon was discovered: a decrease in the resistivity of TiN films leads to a decrease in their EEC values. The results show that the resistivity and EEC of TiN films can be adjusted according to the film-forming components, which is important for the application of TiN in the electronics industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI