Explicitly unbiased large language models still form biased associations

计算机科学 计量经济学 数学 语言学 统计物理学 哲学 物理
作者
Xuechunzi Bai,Angelina Wang,Ilia Sucholutsky,Thomas L. Griffiths
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (8)
标识
DOI:10.1073/pnas.2416228122
摘要

Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: As LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two measures: LLM Word Association Test, a prompt-based method for revealing implicit bias; and LLM Relative Decision Test, a strategy to detect subtle discrimination in contextual decisions. Both measures are based on psychological research: LLM Word Association Test adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Relative Decision Test operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). These prompt-based measures draw from psychology's long history of research into measuring stereotypes based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李健应助haning采纳,获得10
2秒前
麦子完成签到,获得积分20
3秒前
彭于晏应助灰灰采纳,获得10
3秒前
西西完成签到,获得积分10
3秒前
12432完成签到,获得积分20
3秒前
4秒前
5秒前
蟹蟹发布了新的文献求助10
5秒前
Akim应助coco采纳,获得10
6秒前
猫猫陈完成签到,获得积分10
6秒前
6秒前
唐若冰发布了新的文献求助30
6秒前
迷路的书南完成签到,获得积分20
6秒前
phylicia发布了新的文献求助10
6秒前
科研通AI5应助h w wang采纳,获得30
7秒前
SADHIASK完成签到,获得积分10
8秒前
10秒前
完美世界应助HongJiang采纳,获得10
10秒前
yun发布了新的文献求助10
10秒前
11秒前
老Mark完成签到,获得积分10
11秒前
乐乐应助蟹蟹采纳,获得10
12秒前
Joel发布了新的文献求助10
12秒前
LX发布了新的文献求助10
12秒前
kd发布了新的文献求助10
13秒前
13秒前
13秒前
wanci应助ZhouLu采纳,获得10
14秒前
15秒前
彩色修洁发布了新的文献求助200
15秒前
梁guocui发布了新的文献求助10
15秒前
华仔应助光亮的傲白采纳,获得10
16秒前
乐乐应助Sam采纳,获得10
16秒前
16秒前
wcc完成签到,获得积分10
16秒前
li完成签到,获得积分10
17秒前
公孙朝雨发布了新的文献求助10
17秒前
kyokukou发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051