亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SiboN发布了新的文献求助10
31秒前
科研痛完成签到,获得积分10
49秒前
52秒前
Shuo应助breeze采纳,获得10
1分钟前
TXZ06发布了新的文献求助30
1分钟前
xfy完成签到,获得积分10
2分钟前
SiboN完成签到,获得积分10
2分钟前
Owen应助虚幻心锁采纳,获得10
3分钟前
3分钟前
虚幻心锁发布了新的文献求助10
3分钟前
TXZ06发布了新的文献求助30
3分钟前
3分钟前
沉静盼易发布了新的文献求助10
4分钟前
5分钟前
wesz9887完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
无限的可乐完成签到,获得积分10
7分钟前
不想看文献完成签到 ,获得积分10
7分钟前
8分钟前
starbinbin发布了新的文献求助30
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
充电宝应助科研通管家采纳,获得10
9分钟前
10分钟前
11分钟前
优雅听枫应助科研通管家采纳,获得10
11分钟前
MchemG应助科研通管家采纳,获得10
11分钟前
Chen完成签到 ,获得积分10
12分钟前
12分钟前
XXXXX完成签到 ,获得积分10
12分钟前
貔貅完成签到 ,获得积分10
12分钟前
TXZ06完成签到,获得积分10
12分钟前
JamesPei应助沉静盼易采纳,获得10
13分钟前
沉静盼易完成签到,获得积分10
13分钟前
老迟到的梦旋完成签到 ,获得积分10
13分钟前
一只小锦鲤完成签到 ,获得积分10
13分钟前
dd发布了新的文献求助10
14分钟前
dd完成签到,获得积分10
15分钟前
15分钟前
15分钟前
噔噔蹬发布了新的文献求助10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498758
求助须知:如何正确求助?哪些是违规求助? 3949769
关于积分的说明 12244804
捐赠科研通 3608227
什么是DOI,文献DOI怎么找? 1984839
邀请新用户注册赠送积分活动 1021239
科研通“疑难数据库(出版商)”最低求助积分说明 913670