Iterative Machine Learning-Guided Discovery of Transition Metal Compounds as Catalysts for Li–CO 2 and Li–Air Batteries

作者
Ding Ding,Xiaojun Zhu,Haiyan Xiao,Xinyan Liu,Jianli Cheng,Jun Lü,Bin Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c15395
摘要

Transition metal compounds (TMCs) have attracted considerable attention as cathode catalysts for Li-CO2 and Li-air batteries. However, the traditional trial-and-error approach of material design can lead to long and complex research cycles due to the enormous number of transition metal candidates. Here an iterative machine learning (ML) workflow is demonstrated to accelerate the discovery of high-performance cathode catalysts for Li-CO2 batteries, the effectiveness of which is additionally validated by experiments. By iteratively supplementing training data sets under the guidance of machine learning models, this method allows for direct prediction of overpotentials, an important performance metric for catalysts. From 15,012 transition metal compositions, three TMC catalysts were selected and synthesized, and experimental verification shows that the predictive model achieved a mean absolute error of only 0.106 V. Among them, Co0.1Mo0.9N exhibits the best performance and is further subjected to comprehensive mechanism analysis and electrochemical evaluation in Li-CO2 and Li-air batteries. The optimal catalyst, Co0.1Mo0.9N, exhibits low overpotentials of 0.55 and 0.65 V at 50 mA g-1 in Li-CO2 and Li-air batteries, respectively. Co doping reconstructs the electronic structure of MoN, promoting electron transfer and improving catalytic performance. This approach provides a potential pathway for the accelerated screening of new battery catalysts and promotes laboratory sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助流年采纳,获得10
1秒前
彭于晏应助古月方源采纳,获得20
1秒前
躺平的洋仔完成签到,获得积分10
1秒前
Jasper应助NicotineZen采纳,获得10
3秒前
慕青应助ndhy采纳,获得10
3秒前
3秒前
雷霆康康完成签到,获得积分10
3秒前
baiyi发布了新的文献求助10
5秒前
11秒前
12秒前
12秒前
无心发布了新的文献求助10
13秒前
14秒前
14秒前
小熊饼干完成签到,获得积分10
15秒前
16秒前
peir发布了新的文献求助20
17秒前
科研通AI2S应助漂亮的孤风采纳,获得10
18秒前
19秒前
酒爱泡芙发布了新的文献求助10
19秒前
Arlene完成签到,获得积分10
20秒前
金玉发布了新的文献求助10
20秒前
科研通AI2S应助eddie777采纳,获得10
23秒前
打打应助刻苦的雨莲采纳,获得10
24秒前
Lucas应助奋斗惮采纳,获得10
24秒前
24秒前
zls发布了新的文献求助10
24秒前
24秒前
25秒前
漂亮的孤风完成签到,获得积分10
25秒前
25秒前
lihu0416发布了新的文献求助10
26秒前
26秒前
刘大夫发布了新的文献求助10
26秒前
27秒前
27秒前
本之上课发布了新的文献求助10
27秒前
舒适香露完成签到,获得积分10
28秒前
研友_nqv2WZ完成签到,获得积分0
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309422
求助须知:如何正确求助?哪些是违规求助? 4454036
关于积分的说明 13859167
捐赠科研通 4341911
什么是DOI,文献DOI怎么找? 2384254
邀请新用户注册赠送积分活动 1378776
关于科研通互助平台的介绍 1346804