A Deep-Reinforcement-Learning-Based Computation Offloading With Mobile Vehicles in Vehicular Edge Computing

计算卸载 计算机科学 服务器 移动边缘计算 强化学习 边缘计算 计算 GSM演进的增强数据速率 计算机网络 移动设备 边缘设备 分布式计算 移动计算 车载自组网 无线 人工智能 云计算 无线自组网 电信 操作系统 算法
作者
Jie Lin,Siqi Huang,Hanlin Zhang,Xinyu Yang,Peng Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (17): 15501-15514 被引量:26
标识
DOI:10.1109/jiot.2023.3264281
摘要

Vehicular edge networks involve edge servers that are close to mobile devices to provide extra computation resource to complete the computation tasks of mobile devices with low latency and high reliability. Considerable efforts on computation offloading in vehicular edge networks have been developed to reduce the energy consumption and computation latency, in which roadside units (RSUs) are usually considered as the fixed edge servers (FESs). Nonetheless, the computation offloading with considering mobile vehicles as mobile edge servers (MESs) in vehicular edge networks still needs to be further investigated. To this end, in this article, we propose a Deep-Reinforcement-Learning-based computation offloading with mobile vehicles in vehicular edge computing, namely, Deep-Reinforcement-Learning-based computation offloading scheme (DRL-COMV), in which some vehicles (such as autonomous vehicle) are deployed and considered as the MESs that move in vehicular edge networks and cooperate with FESs to provide extra computation resource for mobile devices, in order to assist in completing the computation tasks of these mobile devices with great Quality of Experience (QoE) (i.e., low latency) for mobile devices. Particularly, the computation offloading model with considering both mobile and FESs is conducted to achieve the computation tasks offloading through vehicle-to-vehicle (V2V) communications, and a collaborative route planning is considered for these MESs to move in vehicular edge networks with objective of improving efficiency of computation offloading. Then, a Deep-Reinforcement-Learning approach with designing rational reward function is proposed to determine the effective computation offloading strategies for multiple mobile devices and multiple edge servers with objective of maximizing both QoE (i.e., low latency) for mobile devices. Through performance evaluations, our results show that our proposed DRL-COMV scheme can achieve a great convergence and stability. Additionally, our results also demonstrate that our DRL-COMV scheme also can achieve better both QoE and task offloading requests hit ratio for mobile devices in comparison with existing approaches (i.e., DDPG, IMOPSOQ, and GABDOS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助鲸落Oo采纳,获得10
刚刚
2秒前
ding应助答题不卡采纳,获得10
3秒前
3秒前
3秒前
岁月漫长关注了科研通微信公众号
3秒前
刀客特幽发布了新的文献求助30
4秒前
4秒前
4秒前
保持微笑发布了新的文献求助10
6秒前
wjk发布了新的文献求助30
6秒前
张三发布了新的文献求助10
7秒前
8秒前
优雅老六发布了新的文献求助10
8秒前
123456发布了新的文献求助10
8秒前
348847119发布了新的文献求助10
10秒前
qiuxiu完成签到,获得积分10
10秒前
11秒前
高挑的梦芝完成签到,获得积分10
11秒前
研友_8y2o0L发布了新的文献求助10
11秒前
12秒前
13秒前
简单的易真完成签到,获得积分20
14秒前
solkatt完成签到,获得积分10
14秒前
14秒前
岁月漫长发布了新的文献求助10
15秒前
迪仔完成签到 ,获得积分10
16秒前
爆米花应助348847119采纳,获得10
16秒前
答题不卡发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI6应助飘逸牛青采纳,获得10
18秒前
鲸落Oo完成签到,获得积分20
18秒前
18秒前
wjk完成签到,获得积分20
19秒前
19秒前
Moon应助自信的若风采纳,获得10
19秒前
zxm1997发布了新的文献求助10
19秒前
21秒前
釜底游鱼完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312072
求助须知:如何正确求助?哪些是违规求助? 4455880
关于积分的说明 13864587
捐赠科研通 4344224
什么是DOI,文献DOI怎么找? 2385747
邀请新用户注册赠送积分活动 1380158
关于科研通互助平台的介绍 1348481