A Nomogram Based on Contrast-Enhanced Ultrasound to Predict the Microvascular Invasion in Hepatocellular Carcinoma

列线图 医学 放射科 超声波 对比度(视觉) 肝细胞癌 超声造影 肿瘤科 内科学 计算机科学 人工智能
作者
Bo Jiang,Fei Xiang,Fan XiaoWei,Lianhua Zhu,Lu ShiChun,Yukun Luo
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (7): 1561-1568 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2023.02.020
摘要

The aim of this study was to establish and validate a contrast-enhanced ultrasound (CEUS) nomogram for pre-operative microvascular invasion (MVI) prediction in hepatocellular carcinoma (HCC), and compare it with the nomogram based on gadopentetate dimeglumine-enhanced magnetic resonance imaging (Gd-MRI).A total of 251 patients with a single HCC were enrolled in this prospective study, including 176 patients in the training cohort and 75 patients in the validation cohort. Contrast-enhanced ultrasound (CEUS) with Sonazoid and Gd-MRI was performed pre-operatively. Post-operative histopathology was the gold standard for MVI. Univariate and multivariate logistic regression was performed to determine independent risk factors for MVI. Nomograms based on CEUS and Gd-MRI were established, and their discrimination, calibration and decision curve analysis were evaluated and compared.Multivariate logistic regression revealed that arterial circular enhancement, non-enhancing area and thick ring-like enhancement in the post-vascular phase were independent risk factors for MVI. The areas under the receiver operating characteristic curve of the nomogram were 0.841 (0.779-0.892) and 0.914 (0.827-0.966) in the training and validation cohorts, with no significant difference compared with the Gd-MRI nomogram (p = 0.294, 0.321). The C-indexes were 0.821 and 0.870 in the training and validation cohorts. Decision curve analysis revealed that the CEUS nomogram had better clinical applicability than the Gd-MRI nomogram when the threshold probability was between 0.35 and 0.95.The CEUS-based nomogram was available for predicting MVI in HCC, and its predictive performance was not inferior to that of Gd-MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
g123发布了新的文献求助10
3秒前
热心市民小红花应助zz采纳,获得10
3秒前
无奈青文发布了新的文献求助10
3秒前
科目三应助甜蜜的飞松采纳,获得10
4秒前
淡淡的雪发布了新的文献求助10
4秒前
fengxuan完成签到,获得积分10
4秒前
4秒前
wogua完成签到,获得积分20
4秒前
江之助发布了新的文献求助30
4秒前
醒不来的猫完成签到,获得积分10
4秒前
5秒前
lindoudou发布了新的文献求助10
5秒前
LSH970829发布了新的文献求助10
5秒前
5秒前
5秒前
阔达翠彤发布了新的文献求助500
5秒前
sortie完成签到,获得积分10
6秒前
6秒前
7秒前
可爱的函函应助zpeng采纳,获得10
7秒前
10秒前
10秒前
10秒前
11秒前
chenbin完成签到,获得积分10
11秒前
机智猴发布了新的文献求助10
11秒前
小兵完成签到,获得积分10
11秒前
乐悠完成签到 ,获得积分10
12秒前
12秒前
HYY发布了新的文献求助10
14秒前
15秒前
15秒前
ycw992847127发布了新的文献求助30
15秒前
15秒前
欢呼的棒棒糖完成签到,获得积分10
15秒前
甜甜的青梦完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083215
求助须知:如何正确求助?哪些是违规求助? 3622496
关于积分的说明 11491914
捐赠科研通 3337291
什么是DOI,文献DOI怎么找? 1834592
邀请新用户注册赠送积分活动 903446
科研通“疑难数据库(出版商)”最低求助积分说明 821609