Gated‐Attention Model with Reinforcement Learning for Solving Dynamic Job Shop Scheduling Problem

强化学习 计算机科学 作业车间调度 启发式 变压器 人工智能 调度(生产过程) 嵌入 数学优化 机器学习 地铁列车时刻表 工程类 数学 操作系统 电气工程 电压
作者
Goytom Gebreyesus,Getu Fellek,Ahmed Farid,Shigeru Fujimura,Osamu Yoshie
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:18 (6): 932-944 被引量:5
标识
DOI:10.1002/tee.23788
摘要

Job shop scheduling problem (JSSP) is one of the well‐known NP‐hard combinatorial optimization problems (COPs) that aims to optimize the sequential assignment of finite machines to a set of jobs while adhering to specified problem constraints. Conventional solution approaches which include heuristic dispatching rules and evolutionary algorithms has been largely in use to solve JSSPs. Recently, the use of reinforcement learning (RL) has gained popularity for delivering better solution quality for JSSPs. In this research, we propose an end‐to‐end deep reinforcement learning (DRL) based scheduling model for solving the standard JSSP. Our DRL model uses attention‐based encoder of Transformer network to embed the JSSP environment represented as a disjunctive graph. We introduced Gate mechanism to modulate the flow of learnt features by preventing noise features from propagating across the network to enrich the representations of nodes of the disjunctive graph. In addition, we designed a novel Gate‐based graph pooling mechanism that preferentially constructs the graph embedding. A simple multi‐layer perceptron (MLP) based action selection network is used for sequentially generating optimal schedules. The model is trained using proximal policy optimization (PPO) algorithm which is built on actor critic (AC) framework. Experimental results show that our model outperforms existing heuristics and state of the art DRL based baselines on generated instances and well‐known public test benchmarks. © 2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky应助强健的妙菱采纳,获得10
1秒前
大马哥完成签到 ,获得积分10
1秒前
wzbc完成签到,获得积分10
2秒前
3秒前
可爱的函函应助刘强采纳,获得10
3秒前
3秒前
晨儿发布了新的文献求助10
3秒前
佐zzz完成签到 ,获得积分20
6秒前
及尔发布了新的文献求助10
9秒前
科研通AI5应助张张采纳,获得10
10秒前
sgs完成签到,获得积分10
11秒前
絮语发布了新的文献求助10
13秒前
科研通AI5应助于慧中采纳,获得10
13秒前
快乐的麦片完成签到,获得积分20
13秒前
13秒前
14秒前
kk驳回了大个应助
15秒前
夏蓉完成签到,获得积分10
15秒前
华仔应助懒羊羊采纳,获得10
16秒前
充电宝应助碧蓝的往事采纳,获得10
16秒前
16秒前
彭于晏应助lisa采纳,获得30
17秒前
Eric发布了新的文献求助10
18秒前
夏蓉发布了新的文献求助10
18秒前
及尔完成签到,获得积分10
18秒前
忧郁雪糕发布了新的文献求助10
19秒前
勺儿发布了新的文献求助10
19秒前
19秒前
19秒前
赵宇宙完成签到,获得积分10
21秒前
NexusExplorer应助摸俞采纳,获得10
21秒前
科研通AI5应助Jing采纳,获得10
21秒前
22秒前
皮皮皮咩完成签到,获得积分10
22秒前
科研通AI2S应助梁大海采纳,获得10
22秒前
22秒前
23秒前
天涯倦客发布了新的文献求助20
23秒前
23秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797313
求助须知:如何正确求助?哪些是违规求助? 3342739
关于积分的说明 10312854
捐赠科研通 3059478
什么是DOI,文献DOI怎么找? 1678895
邀请新用户注册赠送积分活动 806277
科研通“疑难数据库(出版商)”最低求助积分说明 763043