Cohort-driven variant burden analysis and pathogenicity identification in monogenic autoinflammatory disorders

生物 遗传学 致病性 等位基因 基因 表型 致病岛 基因组 计算生物学 微生物学
作者
Xiang Chen,Xiaomin Yu
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:152 (2): 517-527 被引量:2
标识
DOI:10.1016/j.jaci.2023.03.028
摘要

Nearly 50 pathogenic genes and hundreds of pathogenic variants have been identified in monogenic autoinflammatory diseases (AIDs). Nonetheless, there are still many genes for which the pathogenic mechanisms are poorly understood, and the pathogenicity of many candidate variants needs to be determined.Monogenic AIDs are a group of rare genetic diseases characterized by inflammation as the phenotype. With the development of next-generation sequencing, pathogenic genes have been widely reported and used for clinical screening and diagnosis. The International Society for Systemic Autoinflammatory Diseases has recognized approximately 50 pathogenic genes and hundreds of related pathogenic variants in monogenic AIDs. We plan to investigate these pathogenic variants by conducting a variant burden analysis to determine whether or not there are consistent characteristics.We performed a variant burden analysis on the Genome Aggregation Database cohort using the currently reported genetic variants in monogenic AIDs, analyzing the enrichment of allelic signatures and deleterious predictions at the variants. Allelic signatures were extracted from Genome Aggregation Database, and the deleterious predictions were extracted from existing tools. The features obtained from the variant burden analysis were applied to the Random Forest model to classify the pathogenicity of novel mutations.Functional enrichment and network analysis of AID pathogenic genes have hinted at the possible involvement of unsuspected signals. The variant burden analysis demonstrated that the pathogenicity of a variant could not be reliably classified using only its allele frequency and deleterious predictions. However, variants of varying classifications of pathogenicity exhibited strikingly different patterns of the allelic signature in the upstream and downstream regions surrounding the variants. Furthermore, the distribution of deleterious variants surrounding the variants in the cohort varied significantly across pathogenicity categories. Finally, the cohort-based features extracted from the alleles were applied to the prediction of pathogenicity in monogenic AIDs, achieving superior prediction performance compared with other tools. The cohort-based features have potential applications across a more extensive variety of disease categories.The pathogenicity of a variant can be effectively classified on the basis of variant frequency and deleterious prediction of the allele in the cohort, and this information can be used to improve the accuracy of the current classification of the pathogenicity of the variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助guard采纳,获得10
1秒前
zcw完成签到 ,获得积分10
3秒前
浮游应助小依爱摸鱼采纳,获得10
5秒前
珏珏_不是玉玉完成签到 ,获得积分10
6秒前
科研一号完成签到 ,获得积分10
7秒前
无限无声完成签到 ,获得积分10
9秒前
小马甲应助呼初南采纳,获得10
10秒前
中论文呢发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
悦耳代双完成签到 ,获得积分10
11秒前
佚名完成签到,获得积分10
12秒前
沫沫完成签到 ,获得积分10
14秒前
14秒前
15秒前
肉肉完成签到 ,获得积分10
15秒前
tong发布了新的文献求助10
15秒前
迅速的千风完成签到,获得积分10
15秒前
16秒前
天真的万声完成签到,获得积分10
17秒前
专注酸奶应助guard采纳,获得10
18秒前
彭于晏应助hcxhch采纳,获得10
19秒前
19秒前
sss发布了新的文献求助10
19秒前
我是老大应助123采纳,获得10
20秒前
22秒前
小新完成签到 ,获得积分10
22秒前
Tristan完成签到 ,获得积分10
24秒前
orixero应助苔原猫咪甜甜圈采纳,获得10
25秒前
楠飞完成签到 ,获得积分10
25秒前
星辰大海应助sss采纳,获得10
26秒前
大雁完成签到 ,获得积分0
26秒前
26秒前
tong完成签到,获得积分10
26秒前
真实的一鸣完成签到,获得积分10
27秒前
搜集达人应助成就的乐双采纳,获得10
29秒前
30秒前
30秒前
31秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499073
求助须知:如何正确求助?哪些是违规求助? 4596077
关于积分的说明 14452115
捐赠科研通 4529187
什么是DOI,文献DOI怎么找? 2481836
邀请新用户注册赠送积分活动 1465860
关于科研通互助平台的介绍 1438802