Cohort-driven variant burden analysis and pathogenicity identification in monogenic autoinflammatory disorders

生物 遗传学 致病性 等位基因 基因 表型 致病岛 基因组 计算生物学 微生物学
作者
Xiang Chen,Xiaomin Yu
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:152 (2): 517-527 被引量:2
标识
DOI:10.1016/j.jaci.2023.03.028
摘要

Nearly 50 pathogenic genes and hundreds of pathogenic variants have been identified in monogenic autoinflammatory diseases (AIDs). Nonetheless, there are still many genes for which the pathogenic mechanisms are poorly understood, and the pathogenicity of many candidate variants needs to be determined.Monogenic AIDs are a group of rare genetic diseases characterized by inflammation as the phenotype. With the development of next-generation sequencing, pathogenic genes have been widely reported and used for clinical screening and diagnosis. The International Society for Systemic Autoinflammatory Diseases has recognized approximately 50 pathogenic genes and hundreds of related pathogenic variants in monogenic AIDs. We plan to investigate these pathogenic variants by conducting a variant burden analysis to determine whether or not there are consistent characteristics.We performed a variant burden analysis on the Genome Aggregation Database cohort using the currently reported genetic variants in monogenic AIDs, analyzing the enrichment of allelic signatures and deleterious predictions at the variants. Allelic signatures were extracted from Genome Aggregation Database, and the deleterious predictions were extracted from existing tools. The features obtained from the variant burden analysis were applied to the Random Forest model to classify the pathogenicity of novel mutations.Functional enrichment and network analysis of AID pathogenic genes have hinted at the possible involvement of unsuspected signals. The variant burden analysis demonstrated that the pathogenicity of a variant could not be reliably classified using only its allele frequency and deleterious predictions. However, variants of varying classifications of pathogenicity exhibited strikingly different patterns of the allelic signature in the upstream and downstream regions surrounding the variants. Furthermore, the distribution of deleterious variants surrounding the variants in the cohort varied significantly across pathogenicity categories. Finally, the cohort-based features extracted from the alleles were applied to the prediction of pathogenicity in monogenic AIDs, achieving superior prediction performance compared with other tools. The cohort-based features have potential applications across a more extensive variety of disease categories.The pathogenicity of a variant can be effectively classified on the basis of variant frequency and deleterious prediction of the allele in the cohort, and this information can be used to improve the accuracy of the current classification of the pathogenicity of the variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8y2o0L发布了新的文献求助10
刚刚
刚刚
aaaa完成签到,获得积分10
1秒前
李广辉发布了新的文献求助10
2秒前
北落完成签到 ,获得积分10
2秒前
CipherSage应助烫塔采纳,获得10
2秒前
百宝完成签到,获得积分10
3秒前
3秒前
4秒前
sophiechen027发布了新的文献求助20
4秒前
凉拌黄瓜完成签到,获得积分10
4秒前
肉乎包发布了新的文献求助10
5秒前
凡不凡人发布了新的文献求助10
6秒前
WIK完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
香蕉觅云应助mirei采纳,获得10
7秒前
7秒前
8秒前
9秒前
传奇3应助chem001采纳,获得10
10秒前
arran1111发布了新的文献求助10
10秒前
li发布了新的文献求助10
10秒前
一条鱼叫弗里登完成签到 ,获得积分10
10秒前
李子潭完成签到,获得积分10
11秒前
小星完成签到 ,获得积分10
11秒前
liuxy发布了新的文献求助10
11秒前
李健的粉丝团团长应助WIK采纳,获得20
12秒前
12秒前
鞘皮完成签到,获得积分10
12秒前
anthea完成签到 ,获得积分10
13秒前
wgl200212完成签到,获得积分10
13秒前
13秒前
树wire发布了新的文献求助10
13秒前
14秒前
14秒前
Ava应助锅里有虾采纳,获得20
15秒前
紧张的斩完成签到 ,获得积分10
15秒前
15秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382390
求助须知:如何正确求助?哪些是违规求助? 4505491
关于积分的说明 14022095
捐赠科研通 4414924
什么是DOI,文献DOI怎么找? 2425245
邀请新用户注册赠送积分活动 1418035
关于科研通互助平台的介绍 1396036