Cohort-driven variant burden analysis and pathogenicity identification in monogenic autoinflammatory disorders

生物 遗传学 致病性 等位基因 基因 表型 致病岛 基因组 计算生物学 微生物学
作者
Xiang Chen,Xiaomin Yu
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:152 (2): 517-527 被引量:2
标识
DOI:10.1016/j.jaci.2023.03.028
摘要

Nearly 50 pathogenic genes and hundreds of pathogenic variants have been identified in monogenic autoinflammatory diseases (AIDs). Nonetheless, there are still many genes for which the pathogenic mechanisms are poorly understood, and the pathogenicity of many candidate variants needs to be determined.Monogenic AIDs are a group of rare genetic diseases characterized by inflammation as the phenotype. With the development of next-generation sequencing, pathogenic genes have been widely reported and used for clinical screening and diagnosis. The International Society for Systemic Autoinflammatory Diseases has recognized approximately 50 pathogenic genes and hundreds of related pathogenic variants in monogenic AIDs. We plan to investigate these pathogenic variants by conducting a variant burden analysis to determine whether or not there are consistent characteristics.We performed a variant burden analysis on the Genome Aggregation Database cohort using the currently reported genetic variants in monogenic AIDs, analyzing the enrichment of allelic signatures and deleterious predictions at the variants. Allelic signatures were extracted from Genome Aggregation Database, and the deleterious predictions were extracted from existing tools. The features obtained from the variant burden analysis were applied to the Random Forest model to classify the pathogenicity of novel mutations.Functional enrichment and network analysis of AID pathogenic genes have hinted at the possible involvement of unsuspected signals. The variant burden analysis demonstrated that the pathogenicity of a variant could not be reliably classified using only its allele frequency and deleterious predictions. However, variants of varying classifications of pathogenicity exhibited strikingly different patterns of the allelic signature in the upstream and downstream regions surrounding the variants. Furthermore, the distribution of deleterious variants surrounding the variants in the cohort varied significantly across pathogenicity categories. Finally, the cohort-based features extracted from the alleles were applied to the prediction of pathogenicity in monogenic AIDs, achieving superior prediction performance compared with other tools. The cohort-based features have potential applications across a more extensive variety of disease categories.The pathogenicity of a variant can be effectively classified on the basis of variant frequency and deleterious prediction of the allele in the cohort, and this information can be used to improve the accuracy of the current classification of the pathogenicity of the variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一发布了新的文献求助10
刚刚
陙兂完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
gjy发布了新的文献求助10
8秒前
清风_breeze发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
10秒前
芜湖完成签到,获得积分20
10秒前
wyg1994发布了新的文献求助10
11秒前
碲化材料发布了新的文献求助10
13秒前
tiantian完成签到 ,获得积分10
15秒前
15秒前
Earnestlee完成签到,获得积分10
16秒前
gjy完成签到,获得积分10
17秒前
17秒前
传奇3应助braver采纳,获得10
17秒前
Nizarn完成签到,获得积分10
18秒前
发酱完成签到,获得积分10
18秒前
19秒前
温超完成签到,获得积分10
20秒前
星辰大海应助清风_breeze采纳,获得10
21秒前
Ria发布了新的文献求助10
22秒前
林雨完成签到,获得积分10
23秒前
ShaohuaGuo完成签到,获得积分10
23秒前
科目三应助cc采纳,获得10
24秒前
浮游应助胖虎采纳,获得10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
braver完成签到,获得积分20
29秒前
29秒前
30秒前
赘婿应助gjy采纳,获得10
31秒前
共享精神应助wyg1994采纳,获得10
32秒前
烂漫芷雪发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5423881
求助须知:如何正确求助?哪些是违规求助? 4538411
关于积分的说明 14162045
捐赠科研通 4455214
什么是DOI,文献DOI怎么找? 2443687
邀请新用户注册赠送积分活动 1434846
关于科研通互助平台的介绍 1412140