Lightweight object detection algorithm for robots with improved YOLOv5

计算机科学 机器人 目标检测 人工智能 对象(语法) 算法 计算 特征提取 特征(语言学) 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Gang Liu,Yanxin Hu,Zhiyu Chen,Jianwei Guo,Peng Ni
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106217-106217 被引量:86
标识
DOI:10.1016/j.engappai.2023.106217
摘要

Robot object detection is important for the realisation of robot intelligence. Currently, deep learning-based object detection algorithms are used for robotic object detection. However, it faces some challenges in practical applications, such as the fact that robots frequently use resource-constrained devices, resulting in detection algorithms with long computation times and undesired detection rates. In order to address these concerns, this paper proposes a lightweight object detection algorithm for robots with an improved YOLOv5. To reduce the amount of processing required for feature extraction and increase the speed of detection, the C3Ghost and GhostConv modules have been introduced into the YOLOv5 backbone. The DWConv module was used in conjunction with the C3Ghost module in the YOLOv5 neck network to further reduce the number of model parameters and maintain accuracy. The CA (Coordinated Attention) module is also introduced to improve the extraction of features from detected objects and suppress irrelevant features, thus improving the algorithm’s detection accuracy. To verify the performance of the method, we tested it with a self-built dataset (4561 robot images in total) and the PascalVOC dataset respectively. The results show that compared with the YOLOv5s on the self-built dataset, the algorithm has a 54% decrease in FLOPs and a 52.53% decrease in the number of model parameters without a decrease in mAP (0.5). The effectiveness and superiority of the algorithm is demonstrated through case studies and comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RockRedfoo完成签到 ,获得积分10
刚刚
zzzzz完成签到,获得积分20
刚刚
皮老师完成签到,获得积分20
刚刚
Hello应助楼一笑采纳,获得10
刚刚
刚刚
小牧完成签到 ,获得积分10
1秒前
情怀应助dd采纳,获得10
1秒前
科研通AI5应助奋斗含巧采纳,获得10
2秒前
momo发布了新的文献求助30
2秒前
2秒前
3秒前
4秒前
leelmomimi发布了新的文献求助10
4秒前
小叙发布了新的文献求助10
5秒前
6秒前
LJS完成签到,获得积分10
6秒前
7秒前
ywffb发布了新的文献求助10
7秒前
彳亍1117应助Vision820采纳,获得10
7秒前
领导范儿应助小橘子采纳,获得10
7秒前
飘逸的山柏完成签到 ,获得积分10
7秒前
yao发布了新的文献求助10
8秒前
8秒前
懵懂的毛豆完成签到,获得积分10
8秒前
8秒前
2024220513完成签到,获得积分20
9秒前
余鱼完成签到,获得积分10
9秒前
niche9964完成签到,获得积分10
9秒前
9秒前
龙猫抱枕发布了新的文献求助10
10秒前
共享精神应助小学生采纳,获得10
10秒前
10秒前
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
李健应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786700
求助须知:如何正确求助?哪些是违规求助? 3332381
关于积分的说明 10255367
捐赠科研通 3047723
什么是DOI,文献DOI怎么找? 1672668
邀请新用户注册赠送积分活动 801476
科研通“疑难数据库(出版商)”最低求助积分说明 760204