Controlled Electron Transfer: Implementing a Reservoir-Pump-Integrated Strategy to Develop a Type I Photosensitizer for Evoking Long-Term Tumor Immunological Memory

化学 电子转移 光敏剂 纳米技术 分子 组合化学 光化学 材料科学 有机化学
作者
Li Xu,Haifeng Ge,Fang Zhu,Mingri Zhao,Hong‐Wen Liu,Xiaobing Zhang,Zhe Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c12631
摘要

Type I photosensitizers (PSs), due to reduced dependence on O2, have outstanding prospects for cancer treatment. However, it is difficult to manipulate electron transfer of molecules during excited state transitions (T1-S0), which makes it a challenging task to systematically create type I PSs, especially with a deficiency of an instructive molecular construction strategy. Herein, for the first time, we proposed the "electron reservoir-pump-integrated" molecular design strategy, that is, "electron reservoir" and "electron pump" were dexterously fused in one appropriate dye, which greatly facilitated the creation of type I PS molecules through the manipulation of spatial electron flow (verified by the density functional theory and spectral experiments). On this basis, we constructed a series of organic small-molecule type I PSs; especially, the prominent type I PS Cy5-NF could specifically produce a large amount of O2•- under 660 nm laser irradiation. Notably, without the sulfonic acid groups (electron reservoir) or the electron-withdrawing group (electron pump), both derivatives of Cy5-NF are unable to generate O2•-, which fully validated the above strategy. More encouragingly, Cy5-NF could effectively destroy cytomembranes under irradiation and further lead to pyroptosis of tumor cells, which not only ablated the primary/distant tumors but also halted tumor metastasis to the different organs via enhancing CD4+ and CD8+ T cell infiltration-mediated long-term immunological memory. Notably, the "electron reservoir-pump-integrated" strategy represents a kind of modular approach for constructing organic small-molecule type I PSs, potentially offering valuable guidance for future type I PS development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎的哈密瓜完成签到 ,获得积分10
1秒前
万能图书馆应助许威采纳,获得10
1秒前
清爽的乐曲完成签到,获得积分10
1秒前
南浔完成签到 ,获得积分10
2秒前
3秒前
完美世界应助rebron采纳,获得10
3秒前
阳光向上的长峥完成签到,获得积分10
3秒前
浮游完成签到,获得积分0
4秒前
鹂鹂复霖霖完成签到,获得积分10
4秒前
5秒前
CC完成签到,获得积分10
6秒前
DONG完成签到 ,获得积分10
6秒前
大模型应助蓝色海采纳,获得10
6秒前
6秒前
7秒前
玉雪晴儿完成签到,获得积分10
7秒前
Jingg完成签到,获得积分10
8秒前
橘子树发布了新的文献求助10
8秒前
8秒前
9秒前
13700672038ty完成签到,获得积分10
9秒前
科研通AI5应助耗纸采纳,获得10
10秒前
11秒前
阳光的晓槐完成签到,获得积分20
11秒前
CHL5722发布了新的文献求助20
11秒前
黄景瑜发布了新的文献求助10
11秒前
Orange应助7890733采纳,获得10
12秒前
wjx发布了新的文献求助30
12秒前
Maxiaoyuan完成签到 ,获得积分10
12秒前
猫猫祟完成签到 ,获得积分10
12秒前
12秒前
深情安青应助vv采纳,获得10
12秒前
13秒前
yycc发布了新的文献求助10
14秒前
yang发布了新的文献求助20
14秒前
上官若男应助英勇巨人采纳,获得10
14秒前
橘子树完成签到,获得积分10
16秒前
17秒前
陈强强完成签到,获得积分20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4755626
求助须知:如何正确求助?哪些是违规求助? 4099017
关于积分的说明 12682559
捐赠科研通 3812978
什么是DOI,文献DOI怎么找? 2104903
邀请新用户注册赠送积分活动 1129833
关于科研通互助平台的介绍 1007787