ViCxLSTM: An extended Long Short-term Memory vision transformer for complex remote sensing scene classification

短时记忆 期限(时间) 地理 地图学 变压器 人工智能 计算机科学 计算机视觉 遥感 工程类 电气工程 物理 人工神经网络 量子力学 电压 循环神经网络
作者
Swalpa Kumar Roy,Ali Jamali,Koushik Biswas,Danfeng Hong,Pedram Ghamisi
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:143: 104801-104801
标识
DOI:10.1016/j.jag.2025.104801
摘要

Scene classification plays a critical role in remote sensing image analysis, with numerous methods based on Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) developed to improve performance on high-resolution remote sensing (HRRS) imagery. However, the existing models struggle with several key challenges, including effectively capturing fine-grained local features and modeling long-range spatial dependencies in complex scenes. These limitations reduce the discriminative power of extracted features, which is critical for HRRS image classification. To overcome these issues, our study aims to design a unified model that jointly leverages local information extraction, global context modeling, and long-range dependency learning. We propose a novel architecture, ViCxLSTM, designed to enhance feature discriminability for HRRS scene classification. ViCxLSTM is a hybrid model that integrates a Local Pattern Unit (comprising convolutional layers and Fourier Transforms), an extended Long Short-Term Memory module (xLSTM), and a Vision Transformer. This integrated architecture enables the model to capture a wide range of spatial patterns, from local textures to long-range dependencies and global contextual relationships. Experimental evaluations show that ViCxLSTM achieves superior classification performance across diverse land use datasets, outperforming several state-of-the-art models, including ResNet-50, ResNet-101, ResNet-152, ViT, LeViT, CrossViT, DeepViT, and CaiT. The code will be provided freely accessible at https://github.com/aj1365/ViCxLSTM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
刚刚
大个应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Manphie应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
99giddens应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
4秒前
学习兮拟排忧完成签到,获得积分10
4秒前
zhu发布了新的文献求助10
4秒前
yuki发布了新的文献求助30
5秒前
壮观之瑶发布了新的文献求助20
5秒前
6秒前
6秒前
7秒前
layla完成签到,获得积分10
8秒前
9秒前
扰仙完成签到,获得积分20
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344367
求助须知:如何正确求助?哪些是违规求助? 4479610
关于积分的说明 13943912
捐赠科研通 4376780
什么是DOI,文献DOI怎么找? 2404908
邀请新用户注册赠送积分活动 1397470
关于科研通互助平台的介绍 1369708