A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 大地测量学 光学 物理 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzx完成签到 ,获得积分10
刚刚
Coffey发布了新的文献求助10
1秒前
微笑谷雪应助tt采纳,获得10
1秒前
1秒前
CodeCraft应助lisbattery采纳,获得10
1秒前
乾隆发布了新的文献求助10
2秒前
优雅醉山发布了新的文献求助10
2秒前
7分运气发布了新的文献求助10
2秒前
彭于晏应助关人土采纳,获得10
3秒前
3秒前
完美世界应助好运来采纳,获得10
3秒前
张世瑞发布了新的文献求助10
4秒前
小二郎应助桥豆麻袋采纳,获得10
4秒前
觉皇完成签到,获得积分10
5秒前
善学以致用应助CHANGJIAGAO采纳,获得10
5秒前
初荣发布了新的文献求助10
5秒前
LMFP完成签到,获得积分10
5秒前
30完成签到,获得积分10
5秒前
5秒前
科研通AI5应助HK采纳,获得10
5秒前
kekekelili完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助20
6秒前
务实小鸽子完成签到 ,获得积分10
6秒前
缥缈的道天完成签到,获得积分10
7秒前
彪壮的凡波完成签到,获得积分10
7秒前
8秒前
星辰大海应助SUNYAOSUNYAO采纳,获得10
8秒前
8秒前
Dr. Chen完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
汉堡包应助app采纳,获得10
10秒前
乾隆完成签到,获得积分10
10秒前
乐乐应助优雅醉山采纳,获得10
11秒前
Jasper应助有魅力大米采纳,获得10
12秒前
12秒前
科研通AI5应助better采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993138
求助须知:如何正确求助?哪些是违规求助? 4240931
关于积分的说明 13212856
捐赠科研通 4036337
什么是DOI,文献DOI怎么找? 2208385
邀请新用户注册赠送积分活动 1219402
关于科研通互助平台的介绍 1137670