HNSPPI: a hybrid computational model combing network and sequence information for predicting protein–protein interaction

计算机科学 基因本体论 蛋白质-蛋白质相互作用 一般化 水准点(测量) 蛋白质测序 计算模型 机器学习 计算生物学 人工智能 药物发现 数据挖掘 生物信息学 肽序列 基因 生物 数学 数学分析 基因表达 生物化学 遗传学 地理 大地测量学
作者
Shaojun Xie,Xiaojun Xie,Xiaoyan Zhao,Fei Liu,Yiming Wang,Jihui Ping,Zhiwei Ji
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bib/bbad261
摘要

Abstract Most life activities in organisms are regulated through protein complexes, which are mainly controlled via Protein–Protein Interactions (PPIs). Discovering new interactions between proteins and revealing their biological functions are of great significance for understanding the molecular mechanisms of biological processes and identifying the potential targets in drug discovery. Current experimental methods only capture stable protein interactions, which lead to limited coverage. In addition, expensive cost and time consuming are also the obvious shortcomings. In recent years, various computational methods have been successfully developed for predicting PPIs based only on protein homology, primary sequences of protein or gene ontology information. Computational efficiency and data complexity are still the main bottlenecks for the algorithm generalization. In this study, we proposed a novel computational framework, HNSPPI, to predict PPIs. As a hybrid supervised learning model, HNSPPI comprehensively characterizes the intrinsic relationship between two proteins by integrating amino acid sequence information and connection properties of PPI network. The experimental results show that HNSPPI works very well on six benchmark datasets. Moreover, the comparison analysis proved that our model significantly outperforms other five existing algorithms. Finally, we used the HNSPPI model to explore the SARS-CoV-2-Human interaction system and found several potential regulations. In summary, HNSPPI is a promising model for predicting new protein interactions from known PPI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助学术摆子采纳,获得10
刚刚
虎咪咪完成签到,获得积分10
刚刚
刚刚
三重积分咖啡完成签到 ,获得积分10
1秒前
豆豆发布了新的文献求助10
2秒前
2秒前
123发布了新的文献求助20
3秒前
yoyo完成签到,获得积分10
3秒前
3秒前
慕青应助du采纳,获得10
3秒前
田様应助875728314采纳,获得10
3秒前
Hou完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
老Mark完成签到,获得积分10
6秒前
喜静完成签到 ,获得积分10
7秒前
慕青应助白衣修身采纳,获得10
8秒前
Frank发布了新的文献求助10
8秒前
9秒前
changfox完成签到,获得积分10
9秒前
9秒前
10秒前
yoyo完成签到 ,获得积分10
11秒前
风驻云停完成签到,获得积分10
12秒前
CY发布了新的文献求助10
13秒前
小飞侠发布了新的文献求助10
14秒前
独步旋碟发布了新的文献求助10
14秒前
14秒前
sc发布了新的文献求助30
15秒前
高兴孤萍发布了新的文献求助10
16秒前
16秒前
任清炎完成签到,获得积分0
16秒前
早起睡个回笼觉完成签到,获得积分10
17秒前
科研通AI5应助动人的白凡采纳,获得30
18秒前
hh发布了新的文献求助10
19秒前
19秒前
小吴同学发布了新的文献求助20
20秒前
20秒前
CY完成签到,获得积分10
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846375
求助须知:如何正确求助?哪些是违规求助? 3388895
关于积分的说明 10554788
捐赠科研通 3109312
什么是DOI,文献DOI怎么找? 1713614
邀请新用户注册赠送积分活动 824819
科研通“疑难数据库(出版商)”最低求助积分说明 775068