Landslide displacement forecasting using deep learning and monitoring data across selected sites

山崩 人工智能 流离失所(心理学) 计算机科学 预警系统 背景(考古学) 深度学习 卷积神经网络 机器学习 预警系统 人工神经网络 自然灾害 地质学 地理 气象学 岩土工程 电信 古生物学 心理治疗师 心理学
作者
Lorenzo Nava,Edoardo Carraro,Cristina Reyes‐Carmona,Silvia Puliero,Kushanav Bhuyan,Ascanio Rosi,Oriol Monserrat,Mario Floris,Sansar Raj Meena,Jorge Pedro Galvé,Filippo Catani
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:20 (10): 2111-2129 被引量:66
标识
DOI:10.1007/s10346-023-02104-9
摘要

Abstract Accurate early warning systems for landslides are a reliable risk-reduction strategy that may significantly reduce fatalities and economic losses. Several machine learning methods have been examined for this purpose, underlying deep learning (DL) models’ remarkable prediction capabilities. The long short-term memory (LSTM) and gated recurrent unit (GRU) algorithms are the sole DL model studied in the extant comparisons. However, several other DL algorithms are suitable for time series forecasting tasks. In this paper, we assess, compare, and describe seven DL methods for forecasting future landslide displacement: multi-layer perception (MLP), LSTM, GRU, 1D convolutional neural network (1D CNN), 2xLSTM, bidirectional LSTM (bi-LSTM), and an architecture composed of 1D CNN and LSTM (Conv-LSTM). The investigation focuses on four landslides with different geographic locations, geological settings, time step dimensions, and measurement instruments. Two landslides are located in an artificial reservoir context, while the displacement of the other two is influenced just by rainfall. The results reveal that the MLP, GRU, and LSTM models can make reliable predictions in all four scenarios, while the Conv-LSTM model outperforms the others in the Baishuihe landslide, where the landslide is highly seasonal. No evident performance differences were found for landslides inside artificial reservoirs rather than outside. Furthermore, the research shows that MLP is better adapted to forecast the highest displacement peaks, while LSTM and GRU are better suited to model lower displacement peaks. We believe the findings of this research will serve as a precious aid when implementing a DL-based landslide early warning system (LEWS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助简单采纳,获得10
1秒前
乐乐应助66采纳,获得10
1秒前
CipherSage应助亲爱的安德烈采纳,获得30
1秒前
123发布了新的文献求助10
1秒前
ZhouYW应助如风随水采纳,获得10
4秒前
4秒前
5秒前
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
典雅问寒应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助小昼采纳,获得10
8秒前
科研通AI5应助碧蓝的往事采纳,获得10
8秒前
8秒前
9秒前
9秒前
烟沿衍言发布了新的文献求助10
10秒前
刺猬发布了新的文献求助10
12秒前
星宫金魁发布了新的文献求助10
12秒前
曾经大地完成签到,获得积分20
13秒前
14秒前
gzf发布了新的文献求助10
15秒前
阳光蛋挞发布了新的文献求助10
15秒前
马牛完成签到,获得积分10
18秒前
大个应助小不溜采纳,获得10
19秒前
19秒前
19秒前
20秒前
20秒前
ln发布了新的文献求助10
21秒前
21秒前
稳重发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806929
求助须知:如何正确求助?哪些是违规求助? 3351694
关于积分的说明 10355403
捐赠科研通 3067586
什么是DOI,文献DOI怎么找? 1684605
邀请新用户注册赠送积分活动 809861
科研通“疑难数据库(出版商)”最低求助积分说明 765683