An Evaluation of Multi-Label Classification Approaches for Method-Level Code Smells Detection

代码气味 计算机科学 编码(集合论) 人工智能 数据挖掘 机器学习 模式识别(心理学) 程序设计语言 软件 软件质量 集合(抽象数据类型) 软件开发
作者
Pravin Singh Yadav,Rajwant Singh Rao,Alok Mishra
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 53664-53676 被引量:5
标识
DOI:10.1109/access.2024.3387856
摘要

(1) Background: Code smell is the most popular and reliable method for detecting potential errors in code. In real-world circumstances, a single source code may have multiple code smells. Multi-label code smell detection is a popular research study. However, limited studies are available on it, and there is a need for a standardized classifier for reliably identifying various multi-label code smells that belong to the method-level code smell category. The primary goal of this study is to develop a rule-based method for detecting multi-label code smells. (2) Methods: Binary Relevance, Label Powerset, and Classifier Chain methods are utilized with tree based single-label algorithms, including some ensemble algorithms in this research paper. The chi-square feature selection technique is applied to select relevant features. The proposed model is trained using 10-fold cross-validation, Random Search cross-validation parameter tuning, and different performance measures are used to evaluate the model. (3) Results: The proposed model achieves 99.54% of the best jaccard accuracy for detecting method-level code smells using the Classifier Chain method with the Decision Tree. The Decision Tree model incorporating a multi-label classifier outperforms alternative approaches to multi-label classification. Single-label classifiers produced better results after considering the correlation factor. (4) Conclusion: This study will facilitate scientists and programmers by providing a systematic method for detecting various code smells in software projects and saving time and effort during code reviews by detecting multiple problems simultaneously. After detecting multi-label code smell, programmers can create more organized, easier-to-understand, and trustworthy programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助excellent采纳,获得10
1秒前
扎心完成签到,获得积分10
2秒前
www123qe完成签到 ,获得积分20
4秒前
果粒橙发布了新的文献求助10
4秒前
5秒前
扎心发布了新的文献求助10
5秒前
科研通AI5应助安详宛筠采纳,获得10
7秒前
7秒前
7秒前
11秒前
12秒前
excellent发布了新的文献求助10
13秒前
13秒前
回颜轻生发布了新的文献求助10
15秒前
小马甲应助乱世采纳,获得10
17秒前
17秒前
17秒前
似我发布了新的文献求助10
18秒前
zzy完成签到,获得积分10
18秒前
科研通AI2S应助wsxw130470采纳,获得10
19秒前
likey完成签到,获得积分10
20秒前
Hello应助小璐璐呀采纳,获得10
20秒前
精明半双完成签到,获得积分10
21秒前
111发布了新的文献求助10
21秒前
22秒前
跟屁虫完成签到,获得积分10
24秒前
斯文败类应助黎洛洛采纳,获得10
25秒前
深情安青应助Mrmiss666采纳,获得10
26秒前
dandan完成签到,获得积分10
26秒前
jjj应助111采纳,获得10
27秒前
无花果应助扎心采纳,获得10
28秒前
似我完成签到,获得积分10
29秒前
果粒橙关注了科研通微信公众号
29秒前
星魂完成签到,获得积分20
30秒前
不吃香菜的爆炸小飞鱼给不吃香菜的爆炸小飞鱼的求助进行了留言
34秒前
34秒前
987发布了新的文献求助10
36秒前
gstaihn发布了新的文献求助30
38秒前
Cai完成签到,获得积分10
38秒前
YOLK97发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783262
求助须知:如何正确求助?哪些是违规求助? 3328579
关于积分的说明 10237185
捐赠科研通 3043691
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130