Prediction of the Properties of Vibro-Centrifuged Variatropic Concrete in Aggressive Environments Using Machine Learning Methods

均方误差 平均绝对百分比误差 抗压强度 极限学习机 计算机科学 机器学习 人工智能 数学 统计 材料科学 人工神经网络 复合材料
作者
Alexey N. Beskopylny,Sergey A. Stel’makh,Evgenii M. Shcherban’,Irina Razveeva,Alexey Kozhakin,Anton Pembek,Tatiana Kondratieva,Diana El’shaeva,Andrei Chernil’nik,Nikita Beskopylny
出处
期刊:Buildings [MDPI AG]
卷期号:14 (5): 1198-1198 被引量:12
标识
DOI:10.3390/buildings14051198
摘要

In recent years, one of the most promising areas in modern concrete science and the technology of reinforced concrete structures is the technology of vibro-centrifugation of concrete, which makes it possible to obtain reinforced concrete elements with a variatropic structure. However, this area is poorly studied and there is a serious deficiency in both scientific and practical terms, expressed in the absence of a systematic knowledge of the life cycle management processes of vibro-centrifuged variatropic concrete. Artificial intelligence methods are seen as one of the most promising methods for improving the process of managing the life cycle of such concrete in reinforced concrete structures. The purpose of the study is to develop and compare machine learning algorithms based on ridge regression, decision tree and extreme gradient boosting (XGBoost) for predicting the compressive strength of vibro-centrifuged variatropic concrete using a database of experimental values obtained under laboratory conditions. As a result of laboratory tests, a dataset of 664 samples was generated, describing the influence of aggressive environmental factors (freezing–thawing, chloride content, sulfate content and number of wetting–drying cycles) on the final strength characteristics of concrete. The use of analytical techniques to extract additional knowledge from data contributed to improving the resulting predictive properties of machine learning models. As a result, the average absolute percentage error (MAPE) for the best XGBoost algorithm was 2.72%, mean absolute error (MAE) = 1.134627, mean squared error (MSE) = 4.801390, root-mean-square error (RMSE) = 2.191208 and R2 = 0.93, which allows to conclude that it is possible to use “smart” algorithms to improve the life cycle management process of vibro-centrifuged variatropic concrete, by reducing the time required for the compressive strength assessment of new structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
樱铃发布了新的文献求助30
1秒前
靓丽幻梅发布了新的文献求助10
1秒前
龙仔发布了新的文献求助10
1秒前
今后应助pyhua采纳,获得10
1秒前
1秒前
顾矜应助Vespa采纳,获得10
2秒前
2秒前
3秒前
大模型应助444采纳,获得10
3秒前
whoKnows应助我666采纳,获得20
4秒前
anwen发布了新的文献求助10
4秒前
鹊谣完成签到,获得积分10
5秒前
5秒前
123发布了新的文献求助10
6秒前
6秒前
LXL发布了新的文献求助10
6秒前
6秒前
zcgy完成签到,获得积分20
6秒前
贺豪发布了新的文献求助10
7秒前
JH发布了新的文献求助10
7秒前
9秒前
韩明佐发布了新的文献求助10
9秒前
大芹菜发布了新的文献求助10
9秒前
FashionBoy应助LXL采纳,获得10
11秒前
于瑜与余完成签到,获得积分10
11秒前
科研通AI6应助红红采纳,获得10
11秒前
Alpha完成签到,获得积分10
12秒前
psylan完成签到,获得积分10
12秒前
13秒前
大模型应助鱼乐乐采纳,获得10
13秒前
13秒前
13秒前
Akim应助鱼乐乐采纳,获得10
13秒前
科研通AI6应助cliu6572采纳,获得10
13秒前
Lucas应助嘟噜嘟噜采纳,获得10
14秒前
于瑜与余发布了新的文献求助10
15秒前
15秒前
无敌幸运星应助体验采纳,获得100
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557336
求助须知:如何正确求助?哪些是违规求助? 4642459
关于积分的说明 14668093
捐赠科研通 4583858
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459404