Macro-microscopic study on the crack resistance of polyester fiber asphalt mixture under dry-wet cycling and neural network prediction

沥青 材料科学 复合材料 纤维 自行车 人工神经网络 聚酯纤维 计算机科学 人工智能 历史 考古 程序设计语言
作者
Jinrong Wu,Yanyan Hu,Qingfen Jin,Haoran Ren
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:20: e03058-e03058 被引量:13
标识
DOI:10.1016/j.cscm.2024.e03058
摘要

Asphalt mixture is a composite material with a complex multiphase dispersed system, and its macroscopic mechanical behavior is inherently related to the microstructure characteristics. To investigate the low-temperature crack resistance degradation law of polyester fiber asphalt mixture under different dry-wet cycling conditions, six polyester fiber contents (0%, 0.3%, 0.35%, 0.4%, 0.45%, and 0.5%) were dry-blended into SMA-13 asphalt mixture to prepare fiber-reinforced SCB specimens with pre-notches. Semi-circular bending tests were conducted to test the crack resistance performance of the fiber asphalt mixture after 0, 2, 4, 6, and 8 dry-wet cycles. The experimental results show that the crack resistance performance of specimens with different fiber contents decreases with the increase of dry-wet cycling times, and the influence of salt-dry-wet coupling is greater than that of water-dry-wet coupling. Under the same conditions, the crack resistance index (CRI) increases first and then decreases with the increase of polyester fiber content, reaching its maximum at a polyester fiber content of 0.4%. When the fiber is added at 0.5%, the agglomeration of polyester fibers restricts the low-temperature performance of the specimen. In addition, the DIC technology is used to analyze the trend of horizontal strain variation of specimens after different dry-wet cycles. The results indicate that with the increase of the cycle period, the strain concentration area becomes more apparent, and in the destruction stage, the full-field horizontal strain Exx in the crack concentration zone gradually increases, while the crack resistance decreases. Finally, addressing the limitations of traditional BP neural networks in solving nonlinear problems, a particle swarm optimization algorithm is proposed to optimize the BP neural network, and a PSO-BP neural network model is constructed. Through the analysis of evaluation indicators, it is found that the PSO-BP neural network has improved generalization ability compared to the traditional BP neural network model, and overfitting is reduced, making it an effective tool for predicting the low-temperature performance of polyester fiber asphalt mixtures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理如凡完成签到,获得积分20
1秒前
星岛完成签到 ,获得积分10
1秒前
1秒前
1秒前
杜瑞豪完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
youasheng完成签到,获得积分10
4秒前
redsnow完成签到,获得积分20
4秒前
无极微光应助科研通管家采纳,获得20
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
华仔应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
youasheng发布了新的文献求助10
7秒前
帆帆牛发布了新的文献求助30
7秒前
8秒前
ZZZ完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553225
求助须知:如何正确求助?哪些是违规求助? 4637764
关于积分的说明 14650974
捐赠科研通 4579638
什么是DOI,文献DOI怎么找? 2511776
邀请新用户注册赠送积分活动 1486737
关于科研通互助平台的介绍 1457665