DF-ParPINN: parallel PINN based on velocity potential field division and single time slice focus

师(数学) 光学(聚焦) 领域(数学) 计算机科学 物理 数学 算术 光学 纯数学
作者
Jingjian Chen,Chunxin Yuan,Jiali Xu,Pengfei Bie,Zhiqiang Wei
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmars.2024.1309775
摘要

Modified Benney-Luke equation (mBL equation) is a three-dimensional temporal-spatial equation with complex structures, that is a high-dimensional partial differential equation (PDE), it is also a new equation of the physical ocean field, and its solution is important for studying the internal wave-wave interaction of inclined seafloor. For conventional PDE solvers such as the pseudo-spectral method, it is difficult to solve mBL equation with both accuracy and speed. Physics-informed neural network (PINN) incorporates physical prior knowledge in deep neural networks, which can solve PDE with relative accuracy and speed. However, PINN is only suitable for solving low-dimensional PDE with simple structures, and not suitable for solving high-dimensional PDE with complex structures. This is mainly because high-dimensional PDEs usually have complex structures and high-order derivatives and are likely to be high-dimensional non-convex functions, and the high-dimensional non-convex optimization problem is an NP-hard problem, resulting in the PINN easily falling into inaccurate local optimal solutions when solving high-dimensional PDEs. Therefore, we improve the PINN for the characteristics of mBL equation and propose “DF-ParPINN: parallel PINN based on velocity potential field division and single time slice focus” to solve mBL equation with large amounts of data. DF-ParPINN consists of three modules: temporal-spatial division module of overall velocity potential field, data rational selection module of multiple time slices, and parallel computation module of high-velocity fields and low-velocity fields. The experimental results show that the solution time of DF-ParPINN is no more than 0.5s, and its accuracy is much higher than that of PINN, PIRNN, cPINN, and DeepONet. Moreover, the relative error of DF-ParPINN after deep training 1000000 epochs can be reduced to less than 0.1. The validity of DF-ParPINN proves that the improved PINN also can solve high dimensional PDE with complex structures and large amounts of data quickly and accurately, which is of great significance to the deep learning of the physical ocean field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Souliko完成签到,获得积分10
刚刚
刚刚
2秒前
靳欣妍完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
俭朴的乐巧完成签到 ,获得积分10
4秒前
123发布了新的文献求助20
5秒前
恋雅颖月发布了新的文献求助10
6秒前
7秒前
xuliping发布了新的文献求助10
7秒前
调皮千兰发布了新的文献求助10
8秒前
9秒前
9秒前
wzy完成签到,获得积分10
11秒前
亮子完成签到,获得积分10
11秒前
12秒前
zhang08完成签到,获得积分10
12秒前
K丶口袋发布了新的文献求助10
13秒前
13秒前
15秒前
生动友绿完成签到 ,获得积分10
17秒前
naturehome发布了新的文献求助10
19秒前
荼蘼如雪发布了新的文献求助10
20秒前
清晨仪仪发布了新的文献求助30
25秒前
llllhh完成签到,获得积分10
27秒前
华仔应助cc采纳,获得10
27秒前
橙子完成签到 ,获得积分10
27秒前
29秒前
lie应助积极的初南采纳,获得10
29秒前
代沁完成签到,获得积分10
30秒前
cc完成签到,获得积分10
31秒前
听雨发布了新的文献求助10
33秒前
李健应助黑暗的白露繁星采纳,获得10
34秒前
玩命的曼冬给玩命的曼冬的求助进行了留言
35秒前
35秒前
123完成签到,获得积分10
35秒前
Orange应助ATREE采纳,获得10
36秒前
彭于晏应助风趣的老太采纳,获得10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128484
求助须知:如何正确求助?哪些是违规求助? 3665677
关于积分的说明 11598182
捐赠科研通 3364759
什么是DOI,文献DOI怎么找? 1848899
邀请新用户注册赠送积分活动 912724
科研通“疑难数据库(出版商)”最低求助积分说明 828134