An overview of machine learning classification techniques

计算机科学 机器学习 人工智能
作者
Amer F.A.H. Alnuaimi,Tasnim H.K. Al-Baldawi
出处
期刊:BIO web of conferences [EDP Sciences]
卷期号:97: 00133-00133 被引量:17
标识
DOI:10.1051/bioconf/20249700133
摘要

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed for categorical output. The objective of supervised learning is to optimize models that can predict class labels based on input features. Classification is a technique used to predict similar information based on the values of a categorical target or class variable. It is a valuable method for analyzing various types of statistical data. These algorithms have diverse applications, including image classification, predictive modeling, and data mining. This study aims to provide a quick reference guide to the most widely used basic classification methods in machine learning, with advantages and disadvantages. Of course, a single article cannot be a complete review of all supervised machine learning classification algorithms. It serves as a valuable resource for both academics and researchers, providing a guide for all newcomers to the field, thereby enriching their comprehension of classification methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的曼寒完成签到,获得积分10
1秒前
2秒前
好大一头鱼完成签到,获得积分10
3秒前
4秒前
学习雷锋好榜样完成签到 ,获得积分10
5秒前
san行发布了新的文献求助10
5秒前
CipherSage应助苹果大白采纳,获得10
6秒前
jimmyhui发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
liancheng发布了新的文献求助10
9秒前
11完成签到,获得积分10
10秒前
苏苏发布了新的文献求助10
11秒前
卢敏明发布了新的文献求助10
11秒前
ysl发布了新的文献求助10
11秒前
隐形曼青应助浅草采纳,获得10
12秒前
14秒前
11发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
lyl19880908应助Moislad采纳,获得10
17秒前
18秒前
清脆的涔发布了新的文献求助10
19秒前
20秒前
20秒前
qiangzhang发布了新的文献求助10
21秒前
shune完成签到 ,获得积分10
22秒前
蜂蜜小熊完成签到 ,获得积分10
22秒前
一条蛆发布了新的文献求助10
23秒前
PEKOEA发布了新的文献求助10
26秒前
汉堡包应助Pendragon采纳,获得10
26秒前
蜂蜜小熊关注了科研通微信公众号
26秒前
科目三应助危机的芸采纳,获得10
26秒前
26秒前
27秒前
科研通AI5应助杨惠文采纳,获得10
27秒前
cdh1994应助六个核桃采纳,获得20
28秒前
张再在关注了科研通微信公众号
28秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819584
求助须知:如何正确求助?哪些是违规求助? 3362520
关于积分的说明 10417409
捐赠科研通 3080719
什么是DOI,文献DOI怎么找? 1694672
邀请新用户注册赠送积分活动 814726
科研通“疑难数据库(出版商)”最低求助积分说明 768422