Molecular and functional imaging in cancer-targeted therapy: current applications and future directions

分子成像 靶向治疗 医学 磁共振成像 癌症治疗 实体瘤疗效评价标准 癌症 模式 正电子发射断层摄影术 医学物理学 病理 临床试验 放射科 内科学 生物 社会科学 社会学 生物技术 体内 临床研究阶段
作者
Junwei Bai,Siqi Qiu,Guojun Zhang
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:8 (1) 被引量:21
标识
DOI:10.1038/s41392-023-01366-y
摘要

Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jackhlj完成签到,获得积分10
1秒前
善学以致用应助X10230采纳,获得10
2秒前
4秒前
5秒前
自觉梦菲完成签到,获得积分10
5秒前
十一完成签到 ,获得积分10
6秒前
NexusExplorer应助fffffggggggllll采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
7秒前
大个应助科研通管家采纳,获得20
7秒前
Akim应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
在水一方应助xx采纳,获得10
8秒前
xionggege完成签到,获得积分10
9秒前
芝麻完成签到,获得积分20
9秒前
务实寄松发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助热情的黑猫采纳,获得10
12秒前
pluto应助朵朵采纳,获得10
13秒前
袋袋发布了新的文献求助10
13秒前
zzz完成签到,获得积分10
13秒前
百事可爱完成签到 ,获得积分10
13秒前
Seven完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
林狗发布了新的文献求助10
14秒前
nulinuli完成签到 ,获得积分10
15秒前
16秒前
读不完的文献啊完成签到,获得积分10
18秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451590
求助须知:如何正确求助?哪些是违规求助? 4559346
关于积分的说明 14273289
捐赠科研通 4483325
什么是DOI,文献DOI怎么找? 2455455
邀请新用户注册赠送积分活动 1446262
关于科研通互助平台的介绍 1422280