Molecular and functional imaging in cancer-targeted therapy: current applications and future directions

分子成像 靶向治疗 医学 磁共振成像 癌症治疗 实体瘤疗效评价标准 癌症 模式 正电子发射断层摄影术 医学物理学 病理 临床试验 放射科 内科学 生物 社会科学 社会学 生物技术 体内 临床研究阶段
作者
Junwei Bai,Siqi Qiu,Guojun Zhang
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:8 (1) 被引量:21
标识
DOI:10.1038/s41392-023-01366-y
摘要

Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zoo应助medlive2020采纳,获得30
1秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
lihe完成签到,获得积分10
5秒前
WWWJY发布了新的文献求助10
6秒前
魁梧的海秋完成签到,获得积分10
6秒前
1234完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
石头发布了新的文献求助10
11秒前
misalia发布了新的文献求助10
12秒前
思源应助M20小陈采纳,获得10
13秒前
15秒前
大个应助愫问采纳,获得10
16秒前
18秒前
杨静完成签到,获得积分10
18秒前
核动力驴发布了新的文献求助10
18秒前
小学生1号完成签到,获得积分10
19秒前
香蕉觅云应助Z丶采纳,获得10
20秒前
21秒前
24秒前
bbbui完成签到 ,获得积分10
24秒前
小学生1号发布了新的文献求助10
24秒前
石头完成签到,获得积分10
24秒前
hyjhhy发布了新的文献求助10
25秒前
26秒前
核动力驴完成签到,获得积分10
27秒前
Ava应助吕姆克的月壤采纳,获得10
27秒前
魁梧的火龙果完成签到,获得积分10
27秒前
27秒前
啊哈完成签到 ,获得积分10
28秒前
Z丶完成签到,获得积分10
29秒前
Beauty完成签到,获得积分10
30秒前
星辰大海应助zhenyu0430采纳,获得10
30秒前
30秒前
lihe发布了新的文献求助10
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231596
求助须知:如何正确求助?哪些是违规求助? 3764977
关于积分的说明 11830407
捐赠科研通 3423970
什么是DOI,文献DOI怎么找? 1878982
邀请新用户注册赠送积分活动 931915
科研通“疑难数据库(出版商)”最低求助积分说明 839431