MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion

方位(导航) 断层(地质) 稳健性(进化) 振动 计算机科学 状态监测 噪音(视频) 加速度计 工程类 人工智能 模式识别(心理学) 地质学 声学 地震学 操作系统 生物化学 化学 物理 电气工程 图像(数学) 基因
作者
Jin Deng,Han Liu,Hairui Fang,Siyu Shao,Dong Wang,Yimin Hou,Dongsheng Chen,Mingcong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110253-110253 被引量:43
标识
DOI:10.1016/j.ymssp.2023.110253
摘要

With the rapid development of pattern recognition represented by deep learning, the massive excellent bearing fault diagnosis methods have emerged. However, the majority of these reports only focus on the diagnosis of single bearing, while there are few works on fault detection of multi-bearing system. Furthermore, many diagnostic models based on vibration signals need to embed an accelerometer in the base or outer wall of the monitored bearing, which introducing new potential safety hazards, since the original machine structure was destructed. Therefore, with the purpose of not damaging the mechanical structure of the monitored bearing and the goal of promoting the detection efficiency by monitoring multiple bearings, a framework, called MgNet (Multi-granularity Network), based on multi-granularity information fusion was proposed, to complete the fault diagnosis and location of multi-bearing system via the vibration signal of auxiliary bearing. Finally, the effectiveness and superiority of the proposed approach were verified on a fault diagnosis dataset of the actual multi-bearing system, i.e., MgNet with strong robustness can complete the fault diagnosis task of multi-bearing system under the interference of noise signal(Gaussian noise and Laplace noise), and accurately locate the bearing where the fault occurs, which is expected to enrich the application scenarios of fault diagnosis algorithms for rotating machinery and improve the efficiency of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详钧完成签到,获得积分20
2秒前
NexusExplorer应助Aba采纳,获得10
2秒前
斯文败类应助平常小丸子采纳,获得10
3秒前
Pepsi发布了新的文献求助10
3秒前
xuanhui完成签到,获得积分20
4秒前
MCRong应助白华苍松采纳,获得20
4秒前
guo发布了新的文献求助10
4秒前
4秒前
酷波er应助小酸酸采纳,获得10
5秒前
6秒前
xuanhui发布了新的文献求助10
6秒前
6秒前
9秒前
西瓜二郎发布了新的文献求助10
10秒前
Zhusy发布了新的文献求助10
11秒前
苻人英完成签到,获得积分10
11秒前
斯文败类应助淡人采纳,获得10
11秒前
冷傲新柔发布了新的文献求助10
12秒前
Pepsi完成签到,获得积分10
12秒前
13秒前
科目三应助Lum1na采纳,获得10
14秒前
14秒前
wulala发布了新的文献求助10
15秒前
finerain7发布了新的文献求助10
16秒前
17秒前
尖头叉子发布了新的文献求助20
17秒前
科研通AI6应助清风朗月采纳,获得10
17秒前
17秒前
科研通AI6应助liang2508采纳,获得10
17秒前
喂喂巍完成签到,获得积分20
17秒前
19秒前
FashionBoy应助Zhoujian采纳,获得10
19秒前
蕊蕊完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
ding应助12采纳,获得10
20秒前
西瓜二郎完成签到,获得积分10
20秒前
大聪明应助finerain7采纳,获得20
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382206
求助须知:如何正确求助?哪些是违规求助? 4505416
关于积分的说明 14021661
捐赠科研通 4414841
什么是DOI,文献DOI怎么找? 2425108
邀请新用户注册赠送积分活动 1417955
关于科研通互助平台的介绍 1395896