Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation

阿米西达 百菌清 多菌灵 质粒 杀菌剂 微生物学 基因 三唑酮 生物 膜透性 化学 生物化学 植物
作者
Houpu Zhang,Jiajin Song,Zhiruo Zheng,Tongxin Li,Nan Shi,Yuling Han,Luqing Zhang,Yunlong Yu,Hua Fang
出处
期刊:Water Research [Elsevier]
卷期号:233: 119789-119789 被引量:69
标识
DOI:10.1016/j.watres.2023.119789
摘要

Co-pollution of soil with pesticide residues and antibiotic resistance genes (ARGs) is increasing due to the substantial usage of pesticides and organic fertilizers in greenhouse-based agricultural production. Non-antibiotic stresses, including those from agricultural fungicides, are potential co-selectors for the horizontal transfer of ARGs, but the underlying mechanism remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic resistant plasmid RP4 were established to examine conjugative transfer frequency under stress from four widely used fungicides: triadimefon, chlorothalonil, azoxystrobin, and carbendazim. The mechanisms were elucidated at the cellular and molecular levels using transmission electron microscopy, flow cytometry, RT-qPCR, and RNA-seq techniques. The conjugative transfer frequency of plasmid RP4 between Escherichia coli strains increased with the rising exposure concentrations of chlorothalonil, azoxystrobin, and carbendazim, but was suppressed between E. coli and Pseudomonas putida by a high fungicide concentration (10 µg/mL). Triadimefon did not significantly affect conjugative transfer frequency. Exploration of the underlying mechanisms revealed that: (i) chlorothalonil exposure mainly promoted generation of intracellular reactive oxygen species, stimulated the SOS response, and increased cell membrane permeability, while (ii) azoxystrobin and carbendazim primarily enhanced expression of conjugation-related genes on the plasmid. These findings reveal the fungicide-triggered mechanisms associated with plasmid conjugation and highlight the potential role of non-bactericidal pesticides on the dissemination of ARGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
川普完成签到,获得积分20
2秒前
3秒前
3秒前
zz完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
Zoe_Zhang发布了新的文献求助10
5秒前
川普发布了新的文献求助10
6秒前
LAVINE发布了新的文献求助10
6秒前
6秒前
6秒前
Ava应助22采纳,获得10
6秒前
七木发布了新的文献求助10
7秒前
vuluv发布了新的文献求助10
7秒前
8秒前
ccc完成签到 ,获得积分10
8秒前
9秒前
ahhhh发布了新的文献求助10
10秒前
10秒前
Hancen发布了新的文献求助10
10秒前
morena发布了新的文献求助10
10秒前
王三渡发布了新的文献求助10
10秒前
辛勤云朵发布了新的文献求助10
11秒前
梦若浮生发布了新的文献求助10
11秒前
11秒前
落后醉易发布了新的文献求助10
12秒前
13秒前
14秒前
小蜗发布了新的文献求助30
14秒前
核桃应助ahhhh采纳,获得10
14秒前
Orange应助小白采纳,获得10
15秒前
怕黑三毒发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
lst完成签到,获得积分10
16秒前
orixero应助七木采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202