已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weakly supervised histopathology image segmentation with self-attention

组织病理学 人工智能 分割 计算机科学 模式识别(心理学) 图像分割 像素 数字化病理学 计算机视觉 病理 医学
作者
Kailu Li,Ziniu Qian,Yingnan Han,Eric Chang,Bingzheng Wei,Maode Lai,Jing Liao,Yubo Fan,Yan Xu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102791-102791 被引量:23
标识
DOI:10.1016/j.media.2023.102791
摘要

Accurate segmentation in histopathology images at pixel-level plays a critical role in the digital pathology workflow. The development of weakly supervised methods for histopathology image segmentation liberates pathologists from time-consuming and labor-intensive works, opening up possibilities of further automated quantitative analysis of whole-slide histopathology images. As an effective subgroup of weakly supervised methods, multiple instance learning (MIL) has achieved great success in histopathology images. In this paper, we specially treat pixels as instances so that the histopathology image segmentation task is transformed into an instance prediction task in MIL. However, the lack of relations between instances in MIL limits the further improvement of segmentation performance. Therefore, we propose a novel weakly supervised method called SA-MIL for pixel-level segmentation in histopathology images. SA-MIL introduces a self-attention mechanism into the MIL framework, which captures global correlation among all instances. In addition, we use deep supervision to make the best use of information from limited annotations in the weakly supervised method. Our approach makes up for the shortcoming that instances are independent of each other in MIL by aggregating global contextual information. We demonstrate state-of-the-art results compared to other weakly supervised methods on two histopathology image datasets. It is evident that our approach has generalization ability for the high performance on both tissue and cell histopathology datasets. There is potential in our approach for various applications in medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tia发布了新的文献求助10
2秒前
尘尘发布了新的文献求助10
4秒前
6秒前
8秒前
余十一完成签到 ,获得积分10
11秒前
chemhub发布了新的文献求助10
15秒前
酷波er应助福明明采纳,获得10
17秒前
21秒前
奇迹大多完成签到,获得积分20
22秒前
小鹿斑比完成签到,获得积分10
25秒前
侃侃完成签到,获得积分10
26秒前
健忘天曼发布了新的文献求助10
27秒前
piaopiao2021完成签到,获得积分20
34秒前
CHSLN完成签到 ,获得积分10
37秒前
daisy应助摆烂小子采纳,获得20
43秒前
凡可可发布了新的文献求助10
44秒前
shanekhost完成签到 ,获得积分10
46秒前
冰冰完成签到 ,获得积分10
49秒前
55秒前
然463完成签到 ,获得积分10
1分钟前
尘尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jiaobu发布了新的文献求助30
1分钟前
凡可可完成签到,获得积分10
1分钟前
阿九发布了新的文献求助10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
有魅力的书本完成签到 ,获得积分10
1分钟前
moon发布了新的文献求助10
1分钟前
上蹿下跳的猹完成签到,获得积分10
1分钟前
lwm不想看文献完成签到 ,获得积分10
1分钟前
jiaobu完成签到,获得积分20
1分钟前
Kashing完成签到,获得积分10
1分钟前
小张吃不胖完成签到 ,获得积分10
1分钟前
xx完成签到 ,获得积分10
1分钟前
领导范儿应助辛勤的乐曲采纳,获得10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281827
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457