Deep‐Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi‐Parametric MRI

医学 有效扩散系数 前列腺癌 磁共振成像 核医学 前列腺 磁共振弥散成像 放射科 活检 接收机工作特性 癌症 内科学
作者
Zhaonan Sun,Pengsheng Wu,Yingpu Cui,Xiang Liu,Kexin Wang,Ge Gao,Huihui Wang,Xiaodong Zhang,Xiaoying Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (4): 1067-1081 被引量:29
标识
DOI:10.1002/jmri.28608
摘要

Deep learning for diagnosing clinically significant prostate cancer (csPCa) is feasible but needs further evaluation in patients with prostate-specific antigen (PSA) levels of 4-10 ng/mL.To explore diffusion-weighted imaging (DWI), alone and in combination with T2-weighted imaging (T2WI), for deep-learning-based models to detect and localize visible csPCa.Retrospective.One thousand six hundred twenty-eight patients with systematic and cognitive-targeted biopsy-confirmation (1007 csPCa, 621 non-csPCa) were divided into model development (N = 1428) and hold-out test (N = 200) datasets.DWI with diffusion-weighted single-shot gradient echo planar imaging sequence and T2WI with T2-weighted fast spin echo sequence at 3.0-T and 1.5-T.The ground truth of csPCa was annotated by two radiologists in consensus. A diffusion model, DWI and apparent diffusion coefficient (ADC) as input, and a biparametric model (DWI, ADC, and T2WI as input) were trained based on U-Net. Three radiologists provided the PI-RADS (version 2.1) assessment. The performances were determined at the lesion, location, and the patient level.The performance was evaluated using the areas under the ROC curves (AUCs), sensitivity, specificity, and accuracy. A P value <0.05 was considered statistically significant.The lesion-level sensitivities of the diffusion model, the biparametric model, and the PI-RADS assessment were 89.0%, 85.3%, and 90.8% (P = 0.289-0.754). At the patient level, the diffusion model had significantly higher sensitivity than the biparametric model (96.0% vs. 90.0%), while there was no significant difference in specificity (77.0%. vs. 85.0%, P = 0.096). For location analysis, there were no significant differences in AUCs between the models (sextant-level, 0.895 vs. 0.893, P = 0.777; zone-level, 0.931 vs. 0.917, P = 0.282), and both models had significantly higher AUCs than the PI-RADS assessment (sextant-level, 0.734; zone-level, 0.863).The diffusion model achieved the best performance in detecting and localizing csPCa in patients with PSA levels of 4-10 ng/mL.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao完成签到,获得积分10
4秒前
Juid应助Maestro_S采纳,获得50
4秒前
9秒前
10秒前
jingsihan完成签到,获得积分10
12秒前
14秒前
scfsl完成签到,获得积分10
14秒前
秦罗敷应助Jere采纳,获得50
15秒前
kiide发布了新的文献求助10
15秒前
shhoing应助Tao采纳,获得10
16秒前
wangzhen完成签到 ,获得积分0
19秒前
善学以致用应助憨憨采纳,获得10
19秒前
科研通AI2S应助杨江华采纳,获得10
20秒前
忽闻水完成签到,获得积分10
22秒前
852应助干冷安采纳,获得30
23秒前
24秒前
科研通AI6应助Jodie采纳,获得10
24秒前
shhoing应助科研通管家采纳,获得10
26秒前
Mic应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得50
26秒前
大龙哥886应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
Zx_1993应助科研通管家采纳,获得20
26秒前
Akim应助科研通管家采纳,获得10
26秒前
大龙哥886应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
Mic应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
Zx_1993应助科研通管家采纳,获得20
27秒前
852应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
情怀应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557651
求助须知:如何正确求助?哪些是违规求助? 4642720
关于积分的说明 14668939
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533