亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CBCT‐Based synthetic CT image generation using conditional denoising diffusion probabilistic model

霍恩斯菲尔德秤 人工智能 图像质量 影像引导放射治疗 计算机科学 锥束ct 降噪 医学影像学 图像配准 分割 磁共振弥散成像 核医学 计算机视觉 医学 图像(数学) 计算机断层摄影术 放射科 磁共振成像
作者
Junbo Peng,Richard L. J. Qiu,Jacob Wynne,Chih‐Wei Chang,Shaoyan Pan,Tonghe Wang,Justin Roper,Tian Liu,Pretesh Patel,David S. Yu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1847-1859 被引量:62
标识
DOI:10.1002/mp.16704
摘要

Abstract Background Daily or weekly cone‐beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image‐guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. Purpose This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT distribution for the image quality improvement of CBCT. Methods The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time‐embedded U‐net architecture with residual and attention blocks to gradually transform the white Gaussian noise sample to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head‐and‐neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR) and normalized cross‐correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model‐based sCT generation methods. Results In the brain patient study, the MAE, PSNR, and NCC of the generated sCT were 25.99 HU, 30.49 dB, and 0.99, respectively, compared to 40.63 HU, 27.87 dB, and 0.98 of the CBCT images. In the H&N patient study, the metrics were 32.56 HU, 27.65 dB, 0.98 and 38.99 HU, 27.00, 0.98 for sCT and CBCT, respectively. Compared to the other four diffusion models and one Cycle generative adversarial network (Cycle GAN), the proposed method showed superior results in both visual quality and quantitative analysis. Conclusions The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT‐based organ segmentation and dose calculation for online ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
过氧化氢应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
5秒前
umesh完成签到,获得积分10
10秒前
上官若男应助liubo采纳,获得10
15秒前
比比谁的速度快完成签到,获得积分0
22秒前
852应助znlion采纳,获得10
23秒前
24秒前
26秒前
27秒前
整齐的不评完成签到,获得积分10
33秒前
甜美青槐发布了新的文献求助10
38秒前
科研通AI5应助任性机器猫采纳,获得30
39秒前
al完成签到 ,获得积分10
40秒前
iiio0oiii发布了新的文献求助10
46秒前
48秒前
早早发布了新的文献求助30
52秒前
53秒前
甜美青槐完成签到,获得积分20
54秒前
56秒前
58秒前
思源应助早早采纳,获得150
59秒前
丘比特应助YLL采纳,获得10
1分钟前
iiio0oiii完成签到,获得积分10
1分钟前
Bond完成签到 ,获得积分10
1分钟前
英俊鼠标完成签到 ,获得积分10
1分钟前
1分钟前
YLL发布了新的文献求助10
1分钟前
头孢西丁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
任性机器猫完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yyy完成签到,获得积分10
2分钟前
liwang9301完成签到,获得积分10
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047964
求助须知:如何正确求助?哪些是违规求助? 3585755
关于积分的说明 11395280
捐赠科研通 3312679
什么是DOI,文献DOI怎么找? 1822649
邀请新用户注册赠送积分活动 894629
科研通“疑难数据库(出版商)”最低求助积分说明 816439