Study on wettability model of coal particles based on composition

润湿 作文(语言) 废物管理 化学工程 环境科学 材料科学 化学 工艺工程 工程类 哲学 语言学
作者
Xing Li,Yong Zhang,Fan Yang,Jiangjiang Hua,Hongzheng Zhu,Baohong Hou
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:45 (4): 12493-12502
标识
DOI:10.1080/15567036.2023.2273404
摘要

In order to assess coal floatability, it is necessary to understand how different coal compositions affect particle-wetting behavior. In this study, the influence of different sizes and densities of particles on coal wettability was conducted, respectively. For this purpose, the coal compositions were explored via XRF and the wetting rising velocity experiment of each coal composition was investigated based on the capillary force. The contact angle decreases obviously with the decrease in particle size. The contact angle decreases as the coal particle density increases. The larger the contact angle, the worse the wettability. The coal compositions had a significant effect on the coal-wetting behavior. The content of organic substances decreased with the decrease in powder size. SiO2 had the highest content and the lowest contact angle among the inorganic oxygen-containing. Hydrogen bonds were created between the hydrogen and oxygen atoms on the surface. The stronger the hydrogen bonding force, the more tightly the water molecules adsorbed. Furthermore, the organic content decreased as the coal density increased. The increase in contaminants could be responsible for this phenomenon. The predictive wetting model between the coal compositions and the contact angle was established and its accuracy was evaluated. The predictive model is reliable at larger coal sizes and lower densities due to an average error at 7.2% of 0.35 mm and 10.61% of 1.35 g/cm3. The results provide some valuable insight into the efficient clean utilization of technology and pre-flotation feedback for coal processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadaup完成签到 ,获得积分10
刚刚
科研通AI5应助害羞的安萱采纳,获得10
刚刚
相濡以沫发布了新的文献求助10
1秒前
小巧的平安完成签到,获得积分10
2秒前
2秒前
moonlight完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
李悟尔发布了新的文献求助10
6秒前
小郭发布了新的文献求助10
6秒前
6秒前
Aki发布了新的文献求助10
6秒前
6秒前
核动力驴完成签到 ,获得积分10
6秒前
11完成签到,获得积分20
7秒前
chj发布了新的文献求助10
7秒前
乐乐应助徐若楠采纳,获得10
7秒前
7秒前
8秒前
科目三应助lvbowen采纳,获得10
9秒前
9秒前
LXhong发布了新的文献求助10
9秒前
易欢完成签到,获得积分10
9秒前
八乙基环辛四烯完成签到,获得积分10
10秒前
122发布了新的文献求助10
10秒前
1l2kl完成签到,获得积分10
10秒前
长孙归尘发布了新的文献求助10
10秒前
11秒前
zdy完成签到,获得积分10
11秒前
11秒前
大个应助33A2D17采纳,获得10
11秒前
达达完成签到,获得积分10
11秒前
桓某人发布了新的文献求助10
11秒前
顾矜应助然然然后采纳,获得10
12秒前
羊羊完成签到 ,获得积分10
12秒前
科研通AI5应助LELE采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
新时代大学生思想政治教育主题研究 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011