Multi-objective evolutionary optimization of photovoltaic glass for thermal, daylight, and energy consideration

日光 光伏系统 环境科学 计算机科学 汽车工程 采光 建筑工程 模拟 光学 工程类 电气工程 物理
作者
Aybüke Taşer,Tuğçe Kazanasmaz,Başak Kundakçı Koyunbaba,Zeynep Durmuş Arsan
出处
期刊:Solar Energy [Elsevier BV]
卷期号:264: 112070-112070 被引量:11
标识
DOI:10.1016/j.solener.2023.112070
摘要

The potential of fenestration systems is increased by incorporating photovoltaic technology into windows. This recently developed technology enhances the ability to generate energy from the building façade, improve the thermal and daylight performance of buildings, and visual comfort of occupants. Integrating an evolutionary optimization algorithm into this technology is one of the possible sustainable solutions to enhance building performance and minimize environmental impact. This paper uses a genetic evolutionary optimization algorithm to explore the optimum performance of photovoltaic glass in an architecture studio regarding annual energy consumption, energy generation, and daylight performance. Design variables include a window-to-wall ratio (i.e., window size and location) and amorphous-silicon thin-film solar cell transparency to generate optimum Pareto-front solutions for the case building. Optimization objectives are minimizing annual thermal (i.e., heating and cooling) loads and maximizing Spatial Daylight Autonomy. Optimized results of low-E semi-transparent amorphous-silicon photovoltaic glass applied on the façade show that the spatial daylight autonomy is increased to 82% with reduced glare risk and higher visual comfort for the occupants. Photovoltaic glass helped reduce the selected room's seasonal and annual lighting loads by up to 26.7%. Lastly, compared to non-optimized photovoltaic glass, they provide 23.2% more annual electrical energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗苗完成签到,获得积分10
刚刚
陈大大发布了新的文献求助10
刚刚
花鸟风月evereo完成签到,获得积分10
1秒前
1秒前
倪牛牛牛关注了科研通微信公众号
1秒前
fffff完成签到,获得积分10
1秒前
2秒前
炼丹完成签到,获得积分10
2秒前
房东家的猫完成签到,获得积分10
2秒前
mengjie发布了新的文献求助30
2秒前
ludy发布了新的文献求助10
3秒前
3秒前
yyyee完成签到,获得积分10
3秒前
3秒前
3秒前
微不足道发布了新的文献求助20
3秒前
365发布了新的文献求助10
3秒前
赘婿应助nn采纳,获得10
5秒前
丁真先生发布了新的文献求助10
5秒前
随意发布了新的文献求助30
6秒前
April完成签到,获得积分10
7秒前
BKSX发布了新的文献求助10
7秒前
7秒前
7秒前
Shibssjd发布了新的文献求助10
7秒前
8秒前
有机发布了新的文献求助10
9秒前
DD发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助Woniu采纳,获得10
9秒前
哈哈发布了新的文献求助10
10秒前
不安靳发布了新的文献求助10
10秒前
RBT完成签到,获得积分10
10秒前
11秒前
yaocx完成签到,获得积分10
11秒前
11秒前
CodeCraft应助独特四娘采纳,获得10
12秒前
艽野发布了新的文献求助10
12秒前
香蕉觅云应助有机采纳,获得10
13秒前
斯文败类应助zilhua采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785471
求助须知:如何正确求助?哪些是违规求助? 3331017
关于积分的说明 10249675
捐赠科研通 3046460
什么是DOI,文献DOI怎么找? 1672051
邀请新用户注册赠送积分活动 800962
科研通“疑难数据库(出版商)”最低求助积分说明 759907