PLASMA PROTEOMICS AND MACHINE LEARNING FOR NOVEL BIOMARKER DISCOVERY IN ADULT MALIGNANT GLIOMA

胶质瘤 蛋白质组学 生物标志物 生物标志物发现 蛋白质组 诊断生物标志物 医学 计算生物学 生物信息学 病理 癌症研究 生物 生物化学 基因
作者
Henriette Pedersen,Kirstine Juul Elbæk,Michael Wodstrup Vandborg,Yi Chieh Lim,Aleena Azam,Sarah Skovlunde Hornshøj Pedersen,Jane Skjøth‐Rasmussen,Erwin M. Schoof,Petra Hamerlik
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_3): iii4-iii4
标识
DOI:10.1093/neuonc/noad147.014
摘要

Abstract AIMS Plasma is a valuable source for identifying non-invasive biomarkers, and when combined with an examination of the highly dynamic proteome, it has the potential to lead to the identification of novel biomarkers in glioma. The aim of this study was to uncover plasma-based protein biomarkers for adult malignant glioma. METHOD Mass spectrometry-based proteomics with tandem mass tag (TMT) labelling of plasma from healthy individuals and adult malignant gliomas was performed. A differential abundance analysis was carried out to identify proteins that were deregulated in primary gliomas compared to healthy individuals. Machine learning was employed to identify a diagnostic biomarker panel. RESULTS When comparing plasma from healthy individuals to that of primary gliomas, several high and low abundant proteins were found to be deregulated. To improve the accuracy and ability of biomarkers to detect malignant gliomas, machine learning was employed and led to a development of a classifier, which performed with high accuracy, specificity, and sensitivity. CONCLUSIONS The discovery of a plasma-based protein classifier, once validated, may facilitate an earlier diagnosis of glioma patients, and thereby reduce time-to-treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的无心完成签到,获得积分10
5秒前
6秒前
善学以致用应助卜婉君采纳,获得10
7秒前
iY发布了新的文献求助10
10秒前
10秒前
12秒前
王子发布了新的文献求助10
12秒前
封尘逸动完成签到,获得积分10
14秒前
宇心完成签到,获得积分10
14秒前
15秒前
刘亿发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
17秒前
seurat发布了新的文献求助10
22秒前
23秒前
陈皮完成签到 ,获得积分10
27秒前
共享精神应助卜婉君采纳,获得10
31秒前
星辰大海应助橘子采纳,获得30
32秒前
33秒前
廖佰城完成签到,获得积分10
34秒前
oboy应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
Owen应助科研通管家采纳,获得20
35秒前
YangDong应助科研通管家采纳,获得10
35秒前
搜集达人应助科研通管家采纳,获得10
35秒前
ding应助科研通管家采纳,获得10
35秒前
孙燕应助科研通管家采纳,获得10
35秒前
研友_VZG7GZ应助科研通管家采纳,获得50
35秒前
oboy应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
威武外套发布了新的文献求助10
37秒前
37秒前
量子星尘发布了新的文献求助10
39秒前
我来学习学习完成签到,获得积分10
39秒前
CipherSage应助神内小大夫采纳,获得10
41秒前
41秒前
焱垚完成签到,获得积分10
42秒前
43秒前
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867092
求助须知:如何正确求助?哪些是违规求助? 3409334
关于积分的说明 10663193
捐赠科研通 3133480
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832848
科研通“疑难数据库(出版商)”最低求助积分说明 780510