Automatic extraction of built-up areas in Chinese urban agglomerations based on the deep learning method using NTL data

城市群 城市化 地理 建成区 萃取(化学) 半岛 地图学 深度学习 计算机科学 土木工程 人工智能 经济地理学 工程类 考古 经济增长 色谱法 经济 化学 土地利用
作者
Pan Hu,Jiehai Cheng,Ping Li,Yuyao Wang
出处
期刊:Geocarto International [Taylor & Francis]
卷期号:38 (1) 被引量:7
标识
DOI:10.1080/10106049.2023.2246939
摘要

Rapidly and accurately extracting built-up areas is an essential prerequisite of urbanization research. There have been many studies on the extraction of built-up areas using remote sensing technologies. So far, few studies have been conducted to evaluate the applicability of the deep learning method to extract built-up areas under the condition that only nighttime light (NTL) data are used. This study proposed a deep learning method to extract the built-up areas using NTL data, and applied the method to analyze the spatial and temporal changes of the built-up areas in Chinese two urban agglomerations from 2000 to 2020. The results show that the U-Net deep learning method can be used to extract built-up areas efficiently under the condition that only NTL data are used. The proposed method was able to improve the accuracy of built-up area extraction significantly compared to the existing method. For the extraction of built-up areas in large regions with long time series, the proposed method can facilitate the work and improve the processing efficiency. The gravity centre of the built-up areas in the Central Plains Urban Agglomeration migrated south-eastward, and the gravity centre of the built-up areas in the Shandong Peninsula Urban Agglomeration migrated south-westward, with these gravity centres gradually approaching the geometric centres of the corresponding urban agglomerations. The built-up areas in the Central Plains and Shandong Peninsula Urban Agglomerations grew rapidly, increasing by 4.14 times and 3.73 times from 2000 to 2020, respectively. The built-up areas in the Central Plains Urban Agglomeration expanded faster, while the urban development degree of the Shandong Peninsula Urban Agglomeration was higher. The urban distributions and development modes of these two urban agglomerations were quite different. The Central Plains Urban Agglomeration tended to further agglomerate, while the Shandong Peninsula Urban Agglomeration tended to disperse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drdrde4u完成签到,获得积分10
刚刚
Yippee完成签到,获得积分10
1秒前
中平完成签到 ,获得积分10
1秒前
gfi完成签到,获得积分10
1秒前
zink完成签到,获得积分10
1秒前
HHHHH完成签到,获得积分10
2秒前
4秒前
Olsters完成签到,获得积分10
4秒前
英姑应助Xu_W卜采纳,获得10
6秒前
mbxjsy发布了新的文献求助10
6秒前
王歪歪完成签到,获得积分10
6秒前
郭星星完成签到,获得积分10
7秒前
youngyang完成签到 ,获得积分10
8秒前
科研通AI2S应助panda采纳,获得10
8秒前
Xiaoxin_Ju完成签到,获得积分10
9秒前
ZYN完成签到,获得积分10
9秒前
夜未央完成签到,获得积分10
9秒前
心内科老中医完成签到,获得积分10
9秒前
小羊小羊完成签到 ,获得积分10
10秒前
臧为完成签到,获得积分10
12秒前
lcx完成签到,获得积分10
13秒前
墨之默完成签到,获得积分10
13秒前
李6666完成签到 ,获得积分10
13秒前
waiho完成签到,获得积分10
14秒前
鑫鑫完成签到,获得积分20
14秒前
Rubby完成签到,获得积分10
15秒前
16秒前
慕青应助yp采纳,获得10
17秒前
NCS完成签到,获得积分10
17秒前
研友_nv2krn完成签到,获得积分10
17秒前
冉亦完成签到,获得积分10
19秒前
wujingshuai完成签到,获得积分10
19秒前
吃饱再睡完成签到 ,获得积分10
19秒前
yunna_ning完成签到,获得积分0
19秒前
20秒前
自由的忆文完成签到,获得积分10
20秒前
zhang完成签到,获得积分10
20秒前
远航发布了新的文献求助10
21秒前
是谁还没睡完成签到 ,获得积分10
21秒前
豌豆射手完成签到,获得积分10
23秒前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099858
求助须知:如何正确求助?哪些是违规求助? 3637429
关于积分的说明 11526201
捐赠科研通 3346612
什么是DOI,文献DOI怎么找? 1839325
邀请新用户注册赠送积分活动 906545
科研通“疑难数据库(出版商)”最低求助积分说明 823856