Application of unsupervised learning and deep learning for rock type prediction and petrophysical characterization using multi-scale data

岩石物理学 储层建模 地质学 岩相学 岩石学 人工智能 多孔性 矿物学 石油工程 构造盆地 岩土工程 地貌学 计算机科学
作者
Shohreh Iraji,Ramin Soltanmohammadi,Gabriela Fernandes Matheus,Mateus Basso,Alexandre Campane Vidal
标识
DOI:10.1016/j.geoen.2023.212241
摘要

This study integrates well log data, routine core analyses, microcomputed X-ray tomography (μCT) images, and sedimentary petrography to accurately characterize and evaluate the carbonate reservoirs of the Barra Velha formation (Aptian) of the Santos Basin within Brazilian pre-salt region. In these carbonate reservoirs, the porous system is extremely diverse and variable, making it challenging to establish rock typing with comparable petrophysical properties. Based on this integrated study, the reservoir sequences were characterized and a precise definition of four reservoir rock types (RRTs) was performed by integrating the petrophysical values from the plugs and their corresponding well log data of two cored wells using K-means unsupervised classification algorithm. The classification results were combined with various conventional techniques to evaluate the quality and geological characteristics of the studied sequence. This evaluation encompassed different parameters such as flow and storage capacity, reservoir quality index, flow zone indicator, pore spaces interpretation, and average pore and throat radius. The study involved a detailed analysis of thin sections to identify various facies, including shrubstones, reworked, and spherulitestone, and to classify various forms of porosity such as interparticle, intraparticle, intercrystalline, vug, moldic, fracture, and growth framework porosity. Pore Network Modeling from μCT analysis of plugs was used specifically for the characterization of pores and throats of plug samples from each RRT. These datasets were utilized as supporting evidence to offer a more accurate and inclusive knowledge of reservoir quality. The study aimed to develop predictive models by implementing deep learning and machine learning algorithms trained on well log data to estimate plug porosity and rock type. Two deep learning models, ResNet and 1D CNN, were trained and evaluated for plug porosity prediction, with the 1D CNN model showing superior performance. Additionally, the XGBoost algorithm was applied to predict rock type, achieving high accuracy on both the training and validation datasets. The predicted results were compared with actual data to evaluate the effectiveness of the models and were then utilized to estimate plug permeability values. The results demonstrate the potential of deep learning and machine learning approaches in reservoir characterization and management, enabling the evaluation of subsurface reservoir properties even with incomplete datasets, which could lead to an improved understanding of the reservoir properties and better management of the reservoir. This integrated study provides deeper insight into the complex reservoir properties and can help improve decision-making processes and optimize management and production strategies in the challenging pre-salt carbonate reservoirs or similar complex reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jzyy完成签到 ,获得积分10
3秒前
MJ发布了新的文献求助10
3秒前
4秒前
1234发布了新的文献求助10
4秒前
aa1212121完成签到,获得积分10
5秒前
shawn完成签到 ,获得积分10
5秒前
七羽完成签到 ,获得积分10
7秒前
FFFFFFG完成签到,获得积分10
9秒前
阿文321完成签到,获得积分10
11秒前
1128发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
dio给dio的求助进行了留言
15秒前
drink发布了新的文献求助10
17秒前
chenzy1987发布了新的文献求助10
18秒前
阿政发布了新的文献求助10
19秒前
qy完成签到,获得积分10
19秒前
顾荠发布了新的文献求助10
20秒前
20秒前
大个应助MW采纳,获得10
20秒前
Finch11完成签到 ,获得积分10
22秒前
新来的家伙完成签到 ,获得积分10
22秒前
搞科研的蜗牛完成签到,获得积分10
24秒前
科研通AI5应助qy采纳,获得10
27秒前
27秒前
28秒前
32秒前
小郑发布了新的文献求助30
33秒前
34秒前
我是老大应助superming采纳,获得10
35秒前
LX发布了新的文献求助10
37秒前
Frost完成签到,获得积分10
37秒前
cdsd完成签到,获得积分10
39秒前
科研狗完成签到 ,获得积分0
39秒前
CodeCraft应助虚心的冷雪采纳,获得10
40秒前
Thien应助李佳宇采纳,获得50
41秒前
SciGPT应助清欢采纳,获得10
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783129
求助须知:如何正确求助?哪些是违规求助? 3328480
关于积分的说明 10236624
捐赠科研通 3043565
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119