亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:120
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
ccc2完成签到,获得积分10
1分钟前
馆长应助科研通管家采纳,获得30
1分钟前
执着的夜春完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
嘻嘻完成签到,获得积分20
2分钟前
2分钟前
嘻嘻发布了新的文献求助10
2分钟前
5分钟前
5分钟前
入门的橙橙完成签到 ,获得积分10
5分钟前
Shonso发布了新的文献求助30
5分钟前
Orange应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得30
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
毓香谷的春天完成签到 ,获得积分0
5分钟前
李李原上草完成签到 ,获得积分0
6分钟前
爆米花应助叶子采纳,获得10
6分钟前
7分钟前
MTF完成签到 ,获得积分10
7分钟前
7分钟前
叶子发布了新的文献求助10
7分钟前
7分钟前
stella发布了新的文献求助10
7分钟前
7分钟前
开心的瘦子完成签到,获得积分10
8分钟前
缥缈无色完成签到 ,获得积分10
8分钟前
脑洞疼应助亭瞳采纳,获得10
9分钟前
9分钟前
Jayzie完成签到 ,获得积分10
9分钟前
亭瞳完成签到,获得积分10
9分钟前
亭瞳发布了新的文献求助10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
misha完成签到 ,获得积分10
10分钟前
CRUSADER完成签到,获得积分10
11分钟前
量子星尘发布了新的文献求助10
11分钟前
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695234
求助须知:如何正确求助?哪些是违规求助? 4065364
关于积分的说明 12568835
捐赠科研通 3764402
什么是DOI,文献DOI怎么找? 2078978
邀请新用户注册赠送积分活动 1107270
科研通“疑难数据库(出版商)”最低求助积分说明 985525