Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:120
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yrh完成签到,获得积分20
刚刚
无花果应助娇气的友易采纳,获得10
2秒前
zxf完成签到,获得积分20
2秒前
3秒前
颜枫莹完成签到,获得积分10
3秒前
爆米花应助舟舟采纳,获得10
4秒前
Hello应助斯文夏蓉采纳,获得10
4秒前
传奇3应助一叶扁舟采纳,获得10
4秒前
小t发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
科研通AI5应助执着山柏采纳,获得10
6秒前
zxf发布了新的文献求助10
6秒前
无畏完成签到 ,获得积分10
7秒前
CodeCraft应助柠檬酸循环采纳,获得10
7秒前
脑洞疼应助寒锐采纳,获得10
7秒前
赘婿应助机智的寒香采纳,获得10
8秒前
9秒前
liuxshan发布了新的文献求助10
9秒前
skskysky发布了新的文献求助10
9秒前
9秒前
10秒前
CipherSage应助安安采纳,获得10
10秒前
开放溪灵完成签到,获得积分10
11秒前
11秒前
科研通AI5应助恐龙植树采纳,获得10
11秒前
清新的洋葱完成签到,获得积分10
11秒前
12秒前
shuenghei完成签到,获得积分10
13秒前
胡图图发布了新的文献求助10
13秒前
明谦完成签到,获得积分10
13秒前
13秒前
14秒前
slforest发布了新的文献求助10
14秒前
TBHP完成签到,获得积分10
14秒前
14秒前
瓦猫完成签到,获得积分20
14秒前
边界序列完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813902
求助须知:如何正确求助?哪些是违规求助? 3358304
关于积分的说明 10393640
捐赠科研通 3075589
什么是DOI,文献DOI怎么找? 1689439
邀请新用户注册赠送积分活动 812865
科研通“疑难数据库(出版商)”最低求助积分说明 767400