亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging machine learning for predicting and monitoring clogging in laser cladding processes: An exploration of neural sensors

堵塞 包层(金属加工) 材料科学 激光功率缩放 人工神经网络 喷嘴 质量流量 人工智能 体积流量 计算机科学 激光器 机器学习 机械工程 工程类 光学 机械 复合材料 历史 考古 物理
作者
Cassiano Bonin,Henrique Simas,Milton Pereira,Arthur Lopes Dal Mago,Pedro Soethe Chagas
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:35 (4) 被引量:3
标识
DOI:10.2351/7.0001154
摘要

This study addresses the development of smart neural sensors to predict the powder mass flow and track clogging in real time during laser cladding. The challenges posed by powder granulometry and challenging environmental conditions that can lead to delivery failures are considered. An extensive experimental setup was conducted that included manipulation of key factors, such as laser power, travel speed, Z-step, N-layers, nozzle-to-substrate distance, and two types of process patterns. The mass flow rate of the powder was used as an independent variable to evaluate the predictive ability of the neural sensor with respect to the mass flow rate. Several models were trained and evaluated with different datasets and images of the cladding equipment. The model that integrated all data and images showed the best accuracy and precision also showed a strong predictive power for real-time estimation of the powder mass flow rate. Considering two practical rules—an error detection time of no more than one second and a confidence interval of less than 1.8 g/min—two strategies were proposed to meet these criteria. The first recommends the use of the comprehensive “all-features” model, while the second proposes a simplified model (with Z-step, N-slices, and the external camera as inputs) for efficient real-time error detection. The study provides an understanding of powder clogging prediction in laser cladding and suggests strategies for leaders in the field. Future research should validate these results and test these models in different environments to predict complex cladding properties and support the development of stand-alone laser cladding systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蝶完成签到 ,获得积分10
刚刚
1秒前
HP发布了新的文献求助10
2秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
2秒前
朝槿完成签到 ,获得积分10
4秒前
5秒前
6秒前
嘻嘻发布了新的文献求助10
8秒前
10秒前
qaxt完成签到,获得积分10
11秒前
赵悦完成签到,获得积分10
11秒前
11秒前
嘻嘻完成签到,获得积分20
15秒前
赵悦发布了新的文献求助10
15秒前
Hello应助踏实的惜萍采纳,获得10
19秒前
20秒前
24秒前
阿菜完成签到,获得积分10
24秒前
32秒前
传奇3应助赵悦采纳,获得10
33秒前
kk应助科研通管家采纳,获得20
33秒前
情怀应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
33秒前
39秒前
领导范儿应助sxmt123456789采纳,获得10
43秒前
Elijah完成签到 ,获得积分10
49秒前
51秒前
52秒前
英俊的铭应助XIN_0116采纳,获得10
52秒前
sxmt123456789发布了新的文献求助10
57秒前
李昕123完成签到 ,获得积分10
57秒前
merry6669完成签到 ,获得积分10
1分钟前
个性的电源完成签到,获得积分10
1分钟前
1分钟前
kaki发布了新的文献求助10
1分钟前
1分钟前
1分钟前
XIN_0116发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622242
关于积分的说明 14582135
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500139
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795