西妥昔单抗
医学
预测值
临床终点
边距(机器学习)
放射科
肿瘤科
癌症
核医学
病理
内科学
临床试验
结直肠癌
计算机科学
机器学习
作者
Jaron G. de Wit,Jasper Vonk,Floris J. Voskuil,Sebastiaan A. H. J. de Visscher,Kees‐Pieter Schepman,Wouter T. R. Hooghiemstra,Matthijs D. Linssen,Sjoerd G. Elias,György B. Halmos,Boudewijn E. C. Plaat,Jan J. Doff,Eben L. Rosenthal,Dominic J. Robinson,Bert van der Vegt,Wouter B. Nagengast,Gooitzen M. van Dam,Max J. H. Witjes
标识
DOI:10.1038/s41467-023-40324-8
摘要
Inadequate surgical margins occur frequently in oral squamous cell carcinoma surgery. Fluorescence molecular imaging (FMI) has been explored for intraoperative margin assessment, but data are limited to phase-I studies. In this single-arm phase-II study (NCT03134846), our primary endpoints were to determine the sensitivity, specificity and positive predictive value of cetuximab-800CW for tumor-positive margins detection. Secondary endpoints were safety, close margin detection rate and intrinsic cetuximab-800CW fluorescence. In 65 patients with 66 tumors, cetuximab-800CW was well-tolerated. Fluorescent spots identified in the surgical margin with signal-to-background ratios (SBR) of ≥2 identify tumor-positive margins with 100% sensitivity, 85.9% specificity, 58.3% positive predictive value, and 100% negative predictive value. An SBR of ≥1.5 identifies close margins with 70.3% sensitivity, 76.1% specificity, 60.5% positive predictive value, and 83.1% negative predictive value. Performing frozen section analysis aimed at the fluorescent spots with an SBR of ≥1.5 enables safe, intraoperative adjustment of surgical margins.
科研通智能强力驱动
Strongly Powered by AbleSci AI