Anomaly Detection Model of Network Dataflow Based on an Improved Grey Wolf Algorithm and CNN

异常检测 计算机科学 数据流 净流量 服务拒绝攻击 网络安全 恒虚警率 数据挖掘 人工智能 异常(物理) 卷积神经网络 计算机网络 物理 互联网 并行计算 万维网 凝聚态物理
作者
Liting Wang,Qinghua Chen,Chao Song
出处
期刊:Electronics [MDPI AG]
卷期号:12 (18): 3787-3787
标识
DOI:10.3390/electronics12183787
摘要

With the popularization of the network and the expansion of its application scope, the problem of abnormal network traffic caused by network attacks, malicious software, traffic peaks, or network device failures is becoming increasingly prominent. This problem not only leads to a decline in network performance and service quality but also may pose a serious threat to network security. This paper proposes a hybrid data processing model based on deep learning for network anomaly detection to improve anomaly detection performance. First, the Grey Wolf optimization algorithm is improved to select high-quality data features, which are then converted to RGB images and input into an anomaly detection model. An anomaly detection model of network dataflow based on a convolutional neural network is designed to recognize network anomalies, including DoS (Denial of Service), R2L (Remote to Local), U2R (User to Root), and Probe (Probing). To verify the effectiveness of the improved Grey Wolf algorithm and the anomaly detection model, we conducted experiments on the KDD99 and UNSW-NB15 datasets. The proposed method achieves an average detection rate of 0.986, which is much higher than all the counterparts. Experimental results show that the accuracy and the detection rates of our method were improved, while the false alarm rate has been reduced, proving the effectiveness of our approach in network anomaly classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜜雪冰城完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
6秒前
7秒前
Ava应助zhanghua采纳,获得10
8秒前
9秒前
10秒前
11秒前
JX关闭了JX文献求助
11秒前
南方白芝麻胡完成签到,获得积分10
11秒前
12秒前
可爱的天曼完成签到,获得积分10
12秒前
12秒前
15秒前
大亚基发布了新的文献求助30
16秒前
16秒前
魔幻乘云发布了新的文献求助10
17秒前
17秒前
要减肥的香芦完成签到,获得积分10
17秒前
英俊的铭应助lhhhh采纳,获得10
18秒前
科目三应助小李采纳,获得10
19秒前
Ya发布了新的文献求助10
20秒前
21秒前
xdc发布了新的文献求助10
21秒前
22秒前
zhanghua发布了新的文献求助10
23秒前
高贵白风发布了新的文献求助30
25秒前
成永福完成签到,获得积分10
26秒前
JX驳回了iNk应助
27秒前
27秒前
希望天下0贩的0应助嘻嘻采纳,获得20
27秒前
28秒前
28秒前
自由冬天完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
研友_nq5EGn完成签到 ,获得积分10
30秒前
32秒前
lixin发布了新的文献求助10
32秒前
可乐发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532543
求助须知:如何正确求助?哪些是违规求助? 4621304
关于积分的说明 14577464
捐赠科研通 4561132
什么是DOI,文献DOI怎么找? 2499202
邀请新用户注册赠送积分活动 1479089
关于科研通互助平台的介绍 1450376