Simultaneous Seismic Data Denoising and Reconstruction With Attention-Based Wavelet-Convolutional Neural Network

卷积神经网络 计算机科学 小波 模式识别(心理学) 降噪 人工智能 小波变换 噪音(视频) 图像(数学)
作者
Vineela Chandra Dodda,Lakshmi Kuruguntla,Anup Kumar Mandpura,Karthikeyan Elumalai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:18
标识
DOI:10.1109/tgrs.2023.3267037
摘要

The knowledge of hidden resources present inside the earth layers is vital for the exploration of petroleum and hydrocarbons. However, the recorded seismic data is noisy and incomplete with missing traces that leads to misinterpretation of the earth layers. In this manuscript, we consider seismic data with Gaussian, non-Gaussian noise distribution, regular and irregular missing traces. We propose a method for simultaneous noise attenuation and reconstruction of the incomplete seismic data with attention based wavelet convolutional neural network (AWUN). The wavelet transform is used as pooling layer and inverse wavelet transform is used for upsampling layers to avoid information loss. The attention module is used to obtain weights for various feature channels with higher weights assigned to the more significant information. In addition, we propose to use hybrid loss function (logcosh + huberloss) to denoise and accurately reconstruct the seismic data. Moreover, the effect of various hyper-parameters in the training process of convolutional neural networks is studied. Further, we tested the performance of proposed method on synthetically generated data and field data examples. The quantitative results demonstrated that our proposed deep learning method has shown improved signal-to-noise ratio (SNR) and mean squared error (MSE) when compared to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jojo完成签到 ,获得积分10
刚刚
无花果应助LHP采纳,获得10
刚刚
刚刚
刚刚
堇色完成签到,获得积分10
1秒前
科目三应助无为采纳,获得10
2秒前
薛冰雪发布了新的文献求助10
2秒前
2秒前
Ava应助邱穗采纳,获得10
2秒前
HJJHJH发布了新的文献求助10
2秒前
浮游应助五十采纳,获得10
2秒前
wwuu发布了新的文献求助10
3秒前
wise111发布了新的文献求助10
3秒前
4秒前
4秒前
dummer完成签到,获得积分10
4秒前
脑洞疼应助Jiang采纳,获得10
5秒前
5秒前
6秒前
6秒前
bodhi发布了新的文献求助10
6秒前
Ysj完成签到,获得积分10
7秒前
我是老大应助ying采纳,获得10
7秒前
7秒前
张嘉慧完成签到,获得积分10
7秒前
ha完成签到,获得积分10
8秒前
gb完成签到 ,获得积分10
9秒前
枳花完成签到,获得积分10
10秒前
10秒前
田様应助薛冰雪采纳,获得10
10秒前
11秒前
hahah发布了新的文献求助10
11秒前
chenqiumu应助程cc采纳,获得30
11秒前
丘比特应助hahaha采纳,获得10
12秒前
Glowing发布了新的文献求助10
12秒前
顾矜应助舍我其谁采纳,获得10
13秒前
gaga发布了新的文献求助10
13秒前
奈落完成签到,获得积分20
13秒前
13秒前
明芷蝶发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763