Simultaneous Seismic Data Denoising and Reconstruction With Attention-Based Wavelet-Convolutional Neural Network

卷积神经网络 计算机科学 小波 模式识别(心理学) 降噪 人工智能 小波变换 噪音(视频) 图像(数学)
作者
Vineela Chandra Dodda,Lakshmi Kuruguntla,Anup Kumar Mandpura,Karthikeyan Elumalai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:27
标识
DOI:10.1109/tgrs.2023.3267037
摘要

The knowledge of hidden resources present inside the earth layers is vital for the exploration of petroleum and hydrocarbons. However, the recorded seismic data is noisy and incomplete with missing traces that leads to misinterpretation of the earth layers. In this manuscript, we consider seismic data with Gaussian, non-Gaussian noise distribution, regular and irregular missing traces. We propose a method for simultaneous noise attenuation and reconstruction of the incomplete seismic data with attention based wavelet convolutional neural network (AWUN). The wavelet transform is used as pooling layer and inverse wavelet transform is used for upsampling layers to avoid information loss. The attention module is used to obtain weights for various feature channels with higher weights assigned to the more significant information. In addition, we propose to use hybrid loss function (logcosh + huberloss) to denoise and accurately reconstruct the seismic data. Moreover, the effect of various hyper-parameters in the training process of convolutional neural networks is studied. Further, we tested the performance of proposed method on synthetically generated data and field data examples. The quantitative results demonstrated that our proposed deep learning method has shown improved signal-to-noise ratio (SNR) and mean squared error (MSE) when compared to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cyril发布了新的文献求助10
1秒前
1秒前
1秒前
小马甲应助满意的丹蝶采纳,获得10
1秒前
当下最好发布了新的文献求助10
3秒前
4秒前
lovelana发布了新的文献求助10
4秒前
缓慢的孱应助帅气的襄采纳,获得30
5秒前
达尔文完成签到 ,获得积分10
5秒前
5秒前
大可发布了新的文献求助10
5秒前
香蕉觅云应助风清扬采纳,获得10
5秒前
5秒前
6秒前
我是老大应助粗心的蜜蜂采纳,获得10
6秒前
7秒前
帕金森发布了新的文献求助10
7秒前
羊青发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
那迪娅完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
坨坨发布了新的文献求助10
12秒前
weapon发布了新的文献求助10
13秒前
xuxiuwei完成签到,获得积分10
13秒前
13秒前
大模型应助liberty采纳,获得10
13秒前
14秒前
小刀发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
Rita完成签到,获得积分10
16秒前
16秒前
粗心的蜜蜂完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077