Simultaneous Seismic Data Denoising and Reconstruction With Attention-Based Wavelet-Convolutional Neural Network

卷积神经网络 计算机科学 小波 模式识别(心理学) 降噪 人工智能 小波变换 噪音(视频) 图像(数学)
作者
Vineela Chandra Dodda,Lakshmi Kuruguntla,Anup Kumar Mandpura,Karthikeyan Elumalai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2023.3267037
摘要

The knowledge of hidden resources present inside the earth layers is vital for the exploration of petroleum and hydrocarbons. However, the recorded seismic data is noisy and incomplete with missing traces that leads to misinterpretation of the earth layers. In this manuscript, we consider seismic data with Gaussian, non-Gaussian noise distribution, regular and irregular missing traces. We propose a method for simultaneous noise attenuation and reconstruction of the incomplete seismic data with attention based wavelet convolutional neural network (AWUN). The wavelet transform is used as pooling layer and inverse wavelet transform is used for upsampling layers to avoid information loss. The attention module is used to obtain weights for various feature channels with higher weights assigned to the more significant information. In addition, we propose to use hybrid loss function (logcosh + huberloss) to denoise and accurately reconstruct the seismic data. Moreover, the effect of various hyper-parameters in the training process of convolutional neural networks is studied. Further, we tested the performance of proposed method on synthetically generated data and field data examples. The quantitative results demonstrated that our proposed deep learning method has shown improved signal-to-noise ratio (SNR) and mean squared error (MSE) when compared to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到 ,获得积分20
1秒前
4秒前
5秒前
木风落完成签到,获得积分10
8秒前
邓佳鑫Alan应助QSJ采纳,获得10
9秒前
thousand发布了新的文献求助10
10秒前
10秒前
人生多错过完成签到,获得积分10
11秒前
852应助赵银志采纳,获得10
12秒前
lhj发布了新的文献求助200
13秒前
yuqinghui98发布了新的文献求助10
15秒前
斯文败类应助加美希尔采纳,获得10
19秒前
19秒前
qcwindchasing完成签到 ,获得积分10
21秒前
jj发布了新的文献求助10
25秒前
绿波电龙完成签到,获得积分10
29秒前
能能完成签到,获得积分10
29秒前
30秒前
30秒前
何求完成签到,获得积分10
30秒前
黑粉头头完成签到,获得积分10
31秒前
33秒前
充电宝应助和谐诗柳采纳,获得10
35秒前
加美希尔发布了新的文献求助10
35秒前
36秒前
37秒前
二三语逢山外山完成签到 ,获得积分10
38秒前
38秒前
昏睡的蟠桃应助xu采纳,获得50
39秒前
nnnnn完成签到 ,获得积分10
41秒前
雨中漫步完成签到,获得积分10
41秒前
懿桉发布了新的文献求助10
43秒前
44秒前
wzy发布了新的文献求助10
44秒前
46秒前
玩命的十三完成签到 ,获得积分10
46秒前
46秒前
47秒前
加美希尔完成签到,获得积分10
49秒前
聪明平灵发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751