卷积神经网络
计算机科学
小波
模式识别(心理学)
降噪
人工智能
小波变换
噪音(视频)
图像(数学)
作者
Vineela Chandra Dodda,Lakshmi Kuruguntla,Anup Kumar Mandpura,Karthikeyan Elumalai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-14
被引量:4
标识
DOI:10.1109/tgrs.2023.3267037
摘要
The knowledge of hidden resources present inside the earth layers is vital for the exploration of petroleum and hydrocarbons. However, the recorded seismic data is noisy and incomplete with missing traces that leads to misinterpretation of the earth layers. In this manuscript, we consider seismic data with Gaussian, non-Gaussian noise distribution, regular and irregular missing traces. We propose a method for simultaneous noise attenuation and reconstruction of the incomplete seismic data with attention based wavelet convolutional neural network (AWUN). The wavelet transform is used as pooling layer and inverse wavelet transform is used for upsampling layers to avoid information loss. The attention module is used to obtain weights for various feature channels with higher weights assigned to the more significant information. In addition, we propose to use hybrid loss function (logcosh + huberloss) to denoise and accurately reconstruct the seismic data. Moreover, the effect of various hyper-parameters in the training process of convolutional neural networks is studied. Further, we tested the performance of proposed method on synthetically generated data and field data examples. The quantitative results demonstrated that our proposed deep learning method has shown improved signal-to-noise ratio (SNR) and mean squared error (MSE) when compared to the existing state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI