Simultaneous Seismic Data Denoising and Reconstruction With Attention-Based Wavelet-Convolutional Neural Network

卷积神经网络 计算机科学 小波 模式识别(心理学) 降噪 人工智能 小波变换 噪音(视频) 图像(数学)
作者
Vineela Chandra Dodda,Lakshmi Kuruguntla,Anup Kumar Mandpura,Karthikeyan Elumalai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:18
标识
DOI:10.1109/tgrs.2023.3267037
摘要

The knowledge of hidden resources present inside the earth layers is vital for the exploration of petroleum and hydrocarbons. However, the recorded seismic data is noisy and incomplete with missing traces that leads to misinterpretation of the earth layers. In this manuscript, we consider seismic data with Gaussian, non-Gaussian noise distribution, regular and irregular missing traces. We propose a method for simultaneous noise attenuation and reconstruction of the incomplete seismic data with attention based wavelet convolutional neural network (AWUN). The wavelet transform is used as pooling layer and inverse wavelet transform is used for upsampling layers to avoid information loss. The attention module is used to obtain weights for various feature channels with higher weights assigned to the more significant information. In addition, we propose to use hybrid loss function (logcosh + huberloss) to denoise and accurately reconstruct the seismic data. Moreover, the effect of various hyper-parameters in the training process of convolutional neural networks is studied. Further, we tested the performance of proposed method on synthetically generated data and field data examples. The quantitative results demonstrated that our proposed deep learning method has shown improved signal-to-noise ratio (SNR) and mean squared error (MSE) when compared to the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AI imaging完成签到,获得积分10
1秒前
彭于晏应助九月鹰飞采纳,获得10
2秒前
大胆的弼完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
daifei完成签到,获得积分10
2秒前
斯文败类应助yan采纳,获得10
2秒前
3秒前
wheat完成签到,获得积分10
3秒前
人不可貌相完成签到,获得积分20
3秒前
程程程完成签到,获得积分10
4秒前
ss完成签到,获得积分10
4秒前
Lauren完成签到 ,获得积分10
4秒前
善良鱼哟完成签到,获得积分10
4秒前
5秒前
务实寒天发布了新的文献求助10
5秒前
理理丽丽完成签到,获得积分20
6秒前
博姐37完成签到 ,获得积分10
7秒前
邓代容发布了新的文献求助10
7秒前
撒啊完成签到,获得积分10
7秒前
7秒前
7秒前
小小柴完成签到,获得积分10
7秒前
大力蚂蚁发布了新的文献求助10
8秒前
EZ完成签到 ,获得积分10
8秒前
JamesPei应助16采纳,获得10
8秒前
pio完成签到,获得积分10
8秒前
yqhide完成签到,获得积分10
8秒前
9秒前
瓶子完成签到 ,获得积分10
9秒前
理理丽丽发布了新的文献求助10
9秒前
豆豆豆莎包完成签到,获得积分10
9秒前
彭于晏应助高分子采纳,获得10
9秒前
夕荀发布了新的文献求助10
9秒前
充电宝应助sunyuan采纳,获得10
9秒前
jeany199037完成签到,获得积分10
9秒前
完美世界应助highhigh采纳,获得10
10秒前
JWonder完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977