亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

975: LOWERING ALARM BURDEN BY THE USE OF ARTIFICIAL INTELLIGENCE

医学 警报 血流动力学 急诊医学 重症监护 远程医疗 重症监护医学 医疗急救 医疗保健 心脏病学 经济增长 复合材料 经济 材料科学
作者
Itai M. Pessach,Ofer Chen,Eric Cucchi,James M. Blum,Craig M. Lilly
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (1): 480-480
标识
DOI:10.1097/01.ccm.0000909628.83049.97
摘要

Introduction: Continuous monitoring is an essential part of critical care and specifically for telemedicine based critical care coverage (Tele-ICU). Most monitoring systems provide warnings intended to alert when a patient’s condition deviates from a predetermined range. When clinicians experience high exposure to alarms (alarm burden), alarm desensitization occurs (Alarm fatigue), leading to missed alarms or delayed response. Alarm fatigue has been increasingly recognized as an important patient safety issue also leading to significant burnout. We have previously developed two novel AI based algorithms that predict respiratory and hemodynamic deterioration with high performance. The aim of the present work was to compare the alarm burden resulting from critical alerts generated by usual Tele-ICU care monitors and our AI based algorithms. Methods: Two separate prospectively designated cohorts (n=6,541 and 6,536 stays) were randomly selected out of 72,650 unique stays of patients admitted to one of 7 ICUs across the UMass Memorial Health Care system from 7-2006 to 9-2017. Performance of the AI based algorithm alerts (AIA) in predicting significant respiratory and hemodynamic deterioration was compared to that of usual Tele-ICU care alerts (UCA). Results: 1306 significant hemodynamic deterioration events and 548 significant respiratory deterioration events occurred across both cohorts. Our AI based algorithm predicted hemodynamic deterioration event with an AUC of 0.96 and 0.97 a median lead time of more than 3.5 hours. Respiratory deterioration prediction by the model had a median lead time of almost 4 hours with an AUC of 0.95 and 0.96 for both cohorts. AIA were more than 20-fold less frequent than UCA alerts, had significantly higher precision and accuracy as well a significantly longer lead time. As a result AIAs were more than 50 fold less frequent than UCAs, leading to a significantly lower alarm burden. Conclusions: Our artificial intelligence based algorithms were able to predict significant deterioration events hours before they occurred with significantly favorable performance as compared to usual care alerts. Besides the great clinical value that will result from earlier intervention the significant reduction in alert burden may assist in reducing alert fatigue and clinician burnout.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
展正希完成签到,获得积分10
2秒前
19秒前
月儿完成签到 ,获得积分10
31秒前
mathmotive完成签到,获得积分10
1分钟前
Demi_Ming发布了新的文献求助80
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
从容芮完成签到,获得积分0
2分钟前
Demi_Ming发布了新的文献求助80
3分钟前
3分钟前
manson发布了新的文献求助30
3分钟前
研友_VZG7GZ应助Demi_Ming采纳,获得10
3分钟前
nickel完成签到,获得积分10
3分钟前
Owen应助玩命的熊猫采纳,获得10
4分钟前
fhw完成签到 ,获得积分10
4分钟前
jjwen完成签到 ,获得积分10
4分钟前
绿色心情完成签到 ,获得积分10
4分钟前
CJW完成签到 ,获得积分10
4分钟前
5分钟前
金鱼咕噜噜luu完成签到,获得积分10
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
慕青应助阿司匹林采纳,获得10
5分钟前
KeYXB完成签到,获得积分10
5分钟前
Akim应助ektyz采纳,获得10
5分钟前
牛八先生完成签到,获得积分10
5分钟前
5分钟前
光合作用完成签到,获得积分10
5分钟前
阿司匹林发布了新的文献求助10
5分钟前
鬼见愁应助科研通管家采纳,获得10
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
ektyz发布了新的文献求助10
6分钟前
ET完成签到,获得积分10
6分钟前
张凡完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Akim应助科研通管家采纳,获得10
7分钟前
鬼见愁应助科研通管家采纳,获得20
7分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
JamesPei应助Demi_Ming采纳,获得10
9分钟前
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4190708
求助须知:如何正确求助?哪些是违规求助? 3726653
关于积分的说明 11738756
捐赠科研通 3402693
什么是DOI,文献DOI怎么找? 1867178
邀请新用户注册赠送积分活动 923836
科研通“疑难数据库(出版商)”最低求助积分说明 834911