光容积图
标准差
平均绝对误差
血压
校准
信号(编程语言)
计算机科学
绝对偏差
波形
近似误差
压力测量
人工智能
模式识别(心理学)
数学
均方误差
统计
算法
医学
计算机视觉
内科学
电信
工程类
滤波器(信号处理)
程序设计语言
雷达
机械工程
作者
Minseong Kim,Hyeon‐Jeong Lee,Kwang‐Yong Kim,Kyu Hyung Kim
标识
DOI:10.1109/metroxraine54828.2022.9967606
摘要
In this study, we propose a deep learning-based framework to estimate blood pressure using photoplethysmogram (PPG) signals. We also propose a calibration method that applies the initial blood pressure information to the estimated results. To evaluate our approach, we used the PPG and blood pressure signals of 4200 patients sampled from the MIMIC-III Waveform Database. The resulting mean absolute error and standard deviation were 4.876mmHg and 5.257mmHg, respectively. Compared to the case of not calibrating using initial blood pressure information, we achieved the performance improvement of mean absolute error of 1.899mmHg and standard deviation of 2.933mmHg.
科研通智能强力驱动
Strongly Powered by AbleSci AI